Abstract 2008

Most human B-cell lymphomas represent mature phenotypes of germinal center (GC) or post-GC origin and are frequently associated with chromosomal translocations, often involving the rearrangement of immunoglobulin (Ig) loci to various cellular oncogenes, leading to oncogenic activation. The mechanisms underlying these processes, however, are not well understood. Several studies suggest that these genetic lesions arise from errors of physiologic DNA rearrangements in GC B cells, namely class switch recombination (CSR) and somatic hypermutation (SHM). Here we report the generation of a mouse model in which DNA breaks are physiologically instituted in mature B cells, yet inefficiently repaired via specific deletion of DNA repair gene XRCC4 in GC B cells, thus effectively creating an in vivo environment for errors in DNA rearrangements. These activated B cells exhibit significant increased chromosomal IgH locus breaks and reduced CSR. In p53-deficient background, these mice develop B-cell lymphoma from 5.5 to 16 months. These clonally developed tumors characteristically harbor chromosomal translocations and phenotypically resemble mature phenotypes. Many of these tumors bear mutated V genes, suggesting that those cells have transited through GC. Thus, this mouse model mimics human B-cell lymphoma and might be useful for the development of therapeutic interventions in B-cell lymphoma.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution