Abstract 2025

The human body produces and removes more than a 100 billion of platelets every day. The mechanisms responsible for platelet homeostasis are subject to speculation since the 1950's. The most popular hypothesis to date has been antibody-mediated clearance, platelet consumption due to massive blood loss and an internal “senescence timer”. We and others have recently demonstrated that sialic acid deficient platelets due to external triggers such as sepsis or chilling are cleared by hepatic asialoglycoprotein receptors (ASGPR) independently of macrophages. Here, we investigated whether loss of sialic acid mediates platelet clearance in vivo. We show that 1) Injection of the specific sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA) lengthened the survival of biotinylated platelets by ∼50% (T1/2 of 72h), compared to mock treated (PBS injected) control mice (T1/2 of 49h); 2) Similarly, biotinylated platelet survival in ASGPR-null mice was prolonged by ∼ 50% (T1/2 of 74h) compared to platelet survival in wild type (WT) mice (T1/2 of 48h); 3) ASGPR-null mice have significantly increased platelet counts, compared to WT (p=0.0004) and platelets isolated from ASGPR-null mice are ∼15% smaller than WT (p=0.03); 4) Platelets isolated from ASGPR-null mice showed significant increased in b-galactose exposure (∼50% increase, i.e. decrease of sialic acid), compared to WT, as evidenced by binding of the b-galactose specific lectin (RCA-I). These data show that the ASGPR not only removes desialylated platelets due to sepsis or chilling, but also regulates platelet homeostasis.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution