Abstract
Abstract 273
VPREB1 deletions occur in 1/3 of pediatric ALL (pALL) patients, but have been considered a normal consequence of λ light chain rearrangement due to VPREB1's location among λ chain variable region genes. Recently, VPREB1 deletions were reported in high risk pALL samples with BCR-ABL1-like gene expression (Den Boer 2009) and VPREB1 under-expression was found in a 38-gene signature associated with relapse (Kang 2010). We characterized VPREB1 deletions to determine if they are part of normal λ light chain rearrangement or represent a bona fide copy number alteration (CNA) that predicts worse outcome in pALL. We first used the genome-wide Molecular Inversion Probe (MIP) 330K Cancer Panel (Affymetrix) to identify VPREB1 deletions in a cohort of 52 pALL patients from the University of Utah (n=47 Precursor B-cell (Pre-B), 4 Precursor T-cell (Pre-T), 1 relapse Pre-B ALL). We found focal VPREB1 deletions in 25% (n=12/48) of Pre-B ALL and no (n=0/4) Pre-T ALL patients. We also identified a distinct and often homozygous deletion (14 kb in length) located ≂f 78 kb upstream of VPREB1 that could represent a potential enhancer region; this possible enhancer deletion was seen in 16.7% (n=8/48) of Pre-B and none of the Pre-T ALL patients. 50% of Pre-B ALL samples had at least one deletion of B-cell developmental gene (SPI1, IKZF1, BCL11A, TCF3, EBF1, PAX5, FOXP1, LEF1, VPREB1, BLNK), and of these, half (n=12/24) had deletion only of VPREB1 or its possible enhancer. We next sorted blood leukocytes from 10 healthy volunteers for quantitative PCR (qPCR) analysis on κ V-J junction (deletion=attempted κ rearrangement), λ V-J junction (deletion=attempted λ rearrangement), LOC96610 and PRAME (distal to VPREB1, among λ-light chain variable genes), VPREB1, and VPREB1 enhancer (proximal to VPREB1, among λ-light chain variable genes). As predicted for normal light chain rearrangement, we observed no deletions in monocytes; 100% of κ-sorted B-cells had κ V-J deletions without lambda deletions; and 100% of λ-sorted B-cells had both κ V-J and λ V-J deletions. We also analyzed 10 mature B-cell (Burkitt) lymphoma samples and observed VPREB1 deletions only in lambda-expressing samples with both κ and λ V-J deletions, and deletions always extended contiguously downstream to λ chain V-J region. We re-analyzed 30 Pre-B ALL samples (Utah cohort) and 11 Pre-B ALL cell lines by qPCR. Results validated MIP CNA patterns and differed from normal sorted B-cell and mature B-cell (Burkitt) results, displaying several types of rearrangements: 1) No light chain rearrangements with no VPREB1/enhancer deletion (n=5/30 [17%] clinical samples and 2/11 [18%] Pre-B cell lines), 2) Normal light chain (κ or κ/λ) rearrangement with no VPREB1/enhancer deletion (n=5/30 [17%] samples and 6/11 [55%] cell lines), 3) Normal light chain (κ or κ/λ) rearrangements with contiguous VPREB1/enhancer deletion (n=1/30 [3%] samples and no cell lines), 4) λ-light chain rearrangement with non-contiguous VPREB1/enhancer deletion (n=13/30 [43%] samples and 2/11 [18%] cell lines), and 5) No λ light chain rearrangement and focal VPREB1/enhancer deletion (n=6/30 [20%] samples and 1/11 [9%] cell lines). In the Utah Pre-B ALL cohort (n=47), VPREB1/enhancer deletions were significantly associated (Fisher's Exact Test, 2-tailed) with Hispanic ethnicity (p= 0.013), relapse (p= 0.027), death (p=0.026), and Day 14 M2 Marrow (5-25% blasts; p=0.038). Finally, we examined the publicly available St. Jude Children's Research Hospital ALL dataset (NEJM 351:533) and found VPREB1 under-expression associated with higher LC50 (resistance) for DNR (p=0.04) and VCR (p=0.04), but not PRED or ASP. In summary, we have shown VPREB1 deletions occur outside the context of normal light chain rearrangement. Unlike physiologic λ rearrangements, VPREB1 deletions do not always extend to the λ V-J junction in pALL. We also identified a focal, homozygous deletion just proximal to VPREB1 that may affect a possible enhancer region for this B-cell developmental gene. VPREB1/enhancer deletions were the only B-cell developmental gene lost in 25% of our cohort, perhaps defining a new Pre-B ALL subtype. Finally, deletion of VPREB1 (and its possible enhancer) predict worse clinical outcome and VPREB1 down-regulation correlates with in vitro drug resistance. Further studies of VPREB1's function in pediatric ALL may improve our understanding of leukemogenesis and could further refine clinical risk stratification.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal