Abstract
Abstract 3622
Epigenetic factors such as DNA methylation have been shown to play a crucial role in the pathogenesis and progression of multiple myeloma (MM), yet studies of DNA methylation in MM are still limited. Therefore, in order to better understand the role of DNA methylation and identify specific genes that may be affected by differential methylation in MM patients, we conducted genome-wide DNA methylation profiling in cd138+ plasma cells purified from bone marrow of the patients with MM and normal donors.
Genomic DNA of CD138+ Plasma cell selected from both MM patients and normal primary bone marrow was extracted using QIAGEN genome isolation kit. Following extraction, methylated DNA was isolated by Chip and hybridized to Affymetrix Human 2.0 tiling arrays. Chip assay and array hybridization was performed by Genepathway Inc. CEL files were processed and normalized using the MAT program, and methylation peaks were called from the resulting MAT scores using a custom segmentation method. Peak annotation and characterization of different genomic regions was done with custom tools and using genome annotation files from the UCSC genome database. All peaks were visualized by IGB online software. Medip-PCR was done in human MM cell lines to validate the methylation status. Methylated gene expression was determined by both Semi-quantitative PCR and real-time PCR. 5′aza was used for demethylation in human MM cell lines. Methylated gene expression with or without 5′aza treatment was determined by both Semi-quantitative PCR and real-time PCR.
Genomic DNA from CD138+ plasma cells from bone marrow of MM patients showed a significant increase in methylation levels compared to normal controls. We demonstrated that the hypermethylated sites were distributed across the genome in the following proportions: 3.2% in the promoter region; 45.6% in the intragenic region; 5.4 % in the 3′ end region; and 46.8 % in the intergenic region. Furthermore, around 9 % promoter CpG islands (CGIs); 11% intragenic CGIs; 15 % CGIs in 3′end region; and 14.3 % intergenic CGIs of patients genomic DNA were methylated. Moreover 2.1% promoter CGIs; 2.3 % intragenic CGIs; 2.5% CGIs in 3′end region; and 4.7% intergenic CGIs were methylated for the normal control. Medip-PCR showed that the identified methylation pattern in MM patients showed similar results in MM cell lines. Expectedly, we also observed that suppressor of cytokine signaling 1 (SOCS1) was hypermethylated at the promoter region (MAT score=19.986) as has been reported in human cell lines. Importantly, another member of SOCS family SOCS3 showed much stronger signal in the promoter region with CpG island (MAT score=31.707) in MM patients compared to normal control. Notably, the expression of two members of TNFR superfamily TNFRSF18 and TNFRSF4 which play an important role in development and programmed cell death of lymphocyte significantly have increased 283 and 141-fold after treatment with 5′aza in MM cell lines.
These findings enhance our understanding of the role of DNA methylation in MM, as one of the epigenetic changes that may contribute to the pathogenesis of this disease. The identification and functional characterization of novel key molecules affected by DNA methylation will provide deeper insight into the molecular basis of MM disease.
Leleu:Celgene: Consultancy, Research Funding; Janssen Cilag: Consultancy, Research Funding; Leo Pharma: Consultancy; Amgen: Consultancy; Chugai: Research Funding; Roche: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal