Abstract
Abstract 1144
Multimerin 1 (MMRN1) is a massive variably-sized homopolymeric protein that is stored in platelet and endothelial cell secretion granules, for release with vascular injury. Recently, MMRN1 was identified to support platelet adhesion in vitro and in vivo. At high shear, MMRN1 supports platelet adhesion by a von Willebrand factor (VWF)-dependent, but integrin-independent mechanism, involving platelet glycoprotein (GP) Ibα. Direct binding of MMRN1 to GP Ibα has not been demonstrated. These data led us to postulate that VWF binds MMRN1 at site(s) distinct from the GP Ibα binding site, and test the roles of VWF A domains in MMRN1 binding.
Modified enzyme linked immunosorbent assays (ELISA) and surface plasmon resonance (SPR) were used to assess binding interactions between wildtype (WT) MMRN1 and WT or domain deleted VWF constructs, and VWF polypeptides. Protein constructs tested included: multimeric VWF deletion constructs ΔA1A2A3-VWF, ΔA1A3-VWF, and ΔA1-VWF, and monomeric VWF polypeptides A1A2A3, A1A2, A1 and A3. Bovine serum albumin (BSA) coated surfaces were used as the negative control.
Unlike WT-VWF, VWF lacking the A domains (ΔA1A2A3-VWF) or the combination of the A1 and A3 domains (ΔA1A3-VWF) did not detectably bind to MMRN1 (p < 0.001). VWF lacking the A1 domain (ΔA1-VWF) showed MMRN1 binding comparable to WT-VWF (p = 0.39), excluding the possibility that MMRN1 binding site is located in VWF A1 domain (the region that binds GP Ibα). VWF polypeptides A1A2A3, A1A2 and A3 bound to MMRN1 (p < 0.001), unlike the VWF polypeptide A1 (p = 0.137), although the A1A2 polypeptide showed reduced binding compared to A1A2A3 (p < 0.001). SPR analyses confirmed that MMRN1 binding was supported by VWF peptides containing the A3 and/or A2 domains.
The regions of VWF that support MMRN1 includes the A3, and possibly A2 domains, which respectively contain binding sites for collagen and ADAMTS-13. Our data suggest that the mechanism by which GP Ibα and VWF support platelet adhesion to MMRN1 at high shear include: VWF binding to GP Ibα via the A1 domain, and to MMRN1 via the A3 and possibly A2 domains. These findings have implications for the molecular mechanisms that support platelet adhesion at sites of vessel injury.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal