Abstract
Abstract 2171
Myeloid derived suppressor cells (MDSC) are a heterogeneous population of cells that accumulate during tumor progression in a process driven by soluble factors such as granulocyte-macrophage colony stimulating factor (GM-CSF). These cells contribute to the suppressive nature of the tumor microenvironment and interfere with the functions of cytotoxic anti-tumor T effector cells. To date, MDSC heterogeneity has presented a barrier to studying the properties of individual MDSC constituents in vivo.
Herein, we find that GM-CSF, a cytokine that promotes the numeric and functional development of monocytes, granulocytes and dendritic cells, and is frequently used as a vaccine adjuvant, is also critical for the expansion of a monocyte-derived MDSC population characterized by the expression of CD11b and the chemokine receptor CCR2. We demonstrate that these cells mediate T cell suppression in a contact dependent fashion and via the function of Arginase and inducible nitric oxide synthase, consistent with known MDSC functions. CD11b+CCR2 negative cells do not have suppressive capability despite also being expanded numerically by the actions of GM-CSF. Utilizing a toxin-mediated ablation strategy that targets CCR2-expressing cells, we demonstrate that monocytic MDSCs regulate activated CD8 T cell entry into the tumor site in vivo, thereby limiting the efficacy of immunotherapy.
Our results extend observations on the dual role of GM-CSF in both stimulation and suppression of tumor immunity and suggest therapeutic targeting of monocytic MDSC could enhance the outcomes of immunotherapy.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal