Abstract
Abstract 2362
The endothelium in embryonic and extraembryonic hematopoietic tissues has the capacity to generate hematopoietic stem and progenitor cells (HS/PC). However, it is unknown how this unique endothelium is specified. Microarray analysis of endothelial cells from hematopoietic tissues of embryos deficient for the bHLH transcription factor Scl/tal1 revealed that Scl establishes a robust hematopoietic transcriptional program in the endothelium. Surprisingly, lack of Scl also induced an unexpected fate switching of the prospective hemogenic endothelium to the cardiac lineage. Scl deficient embryos displayed a dramatic upregulation of cardiac transcription factors and structural proteins within the yolk sac vasculature, resulting in the generation of spontaneously beating cardiomyocytes. Ectopic cardiac potential in Scl deficient embryos arose from endothelial-derived CD31+Pdgfrα+ cardiogenic progenitor cells (CPCs), which were present in all sites of HS/PC generation. Analysis of Runx1-deficient embryos revealed, that although Runx1 acts downstream of Scl during the emergence of definitive HS/PCs, it is not required for the suppression of the cardiac fate in the endothelium. The only wild type tissue that contained CD31+Pdgfrα+ putative CPCs was the heart, and this population was greatly expanded in Scl deficient embryos. Strikingly, endocardium in Scl−/− hearts also activated a robust cardiomyogenic transcriptional program and generated Troponin T+ cardiomyocytes both in vivo and in vitro. Although CD31+Pdgfrα+ CPCs from wild type hearts did not generate readily beating cells in culture, they produced cells expressing endothelial, smooth muscle and cardiomyocyte specific genes, implying multipotentiality of this novel CPC population. Furthermore, CD31+Pdgfrα+ CPCs were greatly reduced in Isl1−/− hearts, which fail to generate functional, multipotential CPCs. Lineage tracing using VE-cadherin Cre Rosa-YFP mouse strain demonstrated that, in addition to generating HS/PCs in hematopoietic tissues, endothelial cells are also the cell of origin for CD31+Pdgfrα+ CPCs in the heart. Together, these data suggest a broader role for embryonic endothelium as a potential source of tissue-specific stem and progenitor cells and implicate Scl/tal1 as an important regulator of endothelial fate choice.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal