Abstract
Abstract 2642
BAFF is essential for B cell maturation, and a lack of either BAFF or its primary receptor, BAFF-R, results in a severe depletion of T2 marginal zone and follicular B cells. Elevated serum BAFF levels have been correlated with an increased risk of developing non-Hodgkin's lymphoma (NHL), along with a more aggressive phenotype. A growing body of genetic evidence points toward an association between the development of human disease and variation in genes encoding BAFF and its receptors. Recently, we characterized a novel lymphoma-associated mutation in TNFRSF13C, the gene encoding BAFF-R. This mutation (BAFF-R H159Y) encodes a His159Tyr substitution in the C-terminus of BAFF-R adjacent to the TRAF3 binding motif. Signaling through BAFF-R H159Y results in increased NF-κB activity, elevated immunoglobulin production and increased association with TRAF2, TRAF3 and TRAF6 compared to wild type (WT) BAFF-R. We have detected this mutation in 6% of total NHL cases (n=129), and in 10% of follicular lymphoma (FL) cases (n=41) evaluated thus far. We previously reported that BAFF-R H159Y expressing mouse B cells exhibited significantly more resistance to Fas ligand (FasL) induced apoptosis compared to their cells expressing BAFF-R WT, and we propose here that BAFF-R H159Y mediated increases in PI3K activity may explain such an enhanced anti-apoptotic response.
In this study we now show that BAFF stimulated HEK 293 cells stably expressing BAFF-R H159Y not only display significantly increased Akt phosphorylation when compared to BAFF-R WT expressing cells, but also demonstrate robust Akt phosphorylation in the absence of BAFF. BAFF-R H159Y-dependent Akt activation also led to activation of the downstream Akt targets mTOR and GSK3β and their phosphorylation was inhibited following treatment with the PI3- kinase inhibitor wortmannin. We next examined the impact of the BAFF-R H159Y mutation on expression of BAFF-target genes. Quantitative PCR analyses revealed that BAFF-R H159Y cells exhibited a pattern of gene expression indicative of promoting cell survival, displaying significantly higher levels of BCL2, BCL2L1 and PIN1, while down-regulating expression of the pro-apoptotic gene BIM. We recently reported that TRAF6 associates with BAFF-R, and that such binding is more pronounced in cells expressing BAFF-R H159Y. In order to investigate the role TRAF6 plays in mediating BAFF-R-dependent PI3K activity, we silenced TRAF6 expression in HEK 293 and Karpas 422 lymphoma cells using TRAF6 shRNA. Reduced TRAF6 protein expression resulted in a parallel decrease in BAFF-R WT mediated phosphorylation of mTOR in Karpas 422 cells and phosphorylation of both Akt and GSK3β was markedly reduced in BAFF-R H159Y expressing HEK 293 cells. Interestingly, TRAF6 knock-down did not affect NF-kB2 activation in either Karpas 422 or HEK BAFF-R expressing cells suggesting that Akt does not play a role in BAFF-R mediated activation of non-canonical NF-kB. Finally, preliminary co-precipitation studies indicate that Akt can be recruited to BAFF-R itself, and our initial observations suggest that such an association is significantly reduced in cells expressing BAFF-R H159Y. Taken together, these studies suggest that the BAFF-R H159Y mutation confers enhanced BAFF-R-dependent PI3K signaling and pro-survival gene expression independent of BAFF. Moreover, such enhanced P13K activation is partly dependent upon TRAF6, and decreased recruitment of Akt to BAFF-R H159Y may function to increase the amount of this PI3K target for activation. Thus, BAFF-R H159Y likely contributes to BAFF signaling irregularities in NHL patients harboring this mutation, and may predispose individuals to developing lymphoma regardless of their serum BAFF concentration.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal