Abstract 3350

HIV-ITP patients have a unique Ab against platelet GPIIIa49-66 which induces oxidative platelet fragmentation in the absence of complement (Cell 106: 551, 2001; JCI 113: 973, 2004). Using a phage display single-chain antibody (scFv) library, we developed a novel human monoclonal scFv Ab against GPIIIa49-66 (named A11), which act similarly to the parental Ab (JBC 283: 3224, 2008). We then produced a bifunctional GPIIIa49-66 agent (named SLK), that targets newly deposited fibrin strands within and surrounding the platelet thrombus and has reduced effects on non-activated circulating platelets (Blood 116: 2336, 2010). In this study, we produced another bifunctional GPIIIa49-66 agent (named APAC), which homes to activated platelets. Like SLK, APAC destroys platelet aggregates ex vivo in an identical fashion with 85% destruction of platelet aggregates at 2 hrs. Platelet aggregate dissolution with a combination of SLK and APAC was 2 fold greater than either agent alone at 0.025 μM. Platelet-rich clot lysis experiments demonstrated the time required for 50% platelet-rich fibrin clot lysis (T50%) by APAC (95±6.1 min) was significantly longer than that by APAC+SLK (65±7.6 min) at a final concentration of 0.025 μM (APAC+SLK vs APAC, p<0.01). In comparison with APAC alone, the T50% of APAC+SLK was shortened by 1.56, 1.67 and 2.1 fold at the concentrations of 0.025, 0.5 and 0.1μM, respectively. Thus these low concentrations of a combination of both agents are likely to be more effective and less toxic when used therapeutically in vivo.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution