Abstract
Abstract 4010
The primary axis of migration for transplanted hematopoietic stem and progenitor cells (HSPC) is CXCL12/CXCR4. Heparan sulphate (HS) is required for CXCL12 presentation and receptor binding, but the functional role of HS is poorly defined. The alpha-L-iduronidase knockout mouse (Idua−/−) accumulates HS and dermatan sulphate, recapitulating the neurodegenerative lysosomal storage disease Mucopolysaccharidosis I Hurler (MPSIH). MPSIH is primarily treated with HSPC transplant, but clinical experience suggests a historical engraftment defect in patients.
We show significantly reduced HSPC migration in Idua−/− recipients and under limiting engraftment conditions we show a significant haematopoietic engraftment defect in Idua−/− recipients. No significant donor cell effect was observed. Bone marrow but not peripheral blood CXCL12 levels are slightly elevated in Idua−/− mice. CFU frequency in BM is unchanged between genotypes but reduced significantly in peripheral blood of Idua−/− mice. In whole bone marrow, and on mesenchymal stem cells from Idua−/− mice, HS is present in significant excess, particularly in extracellular matrix, and cell surface locations, with significant increases in all sulphation modifications, especially 2-O-sulphation. Finally we show that excess HS, and particularly HS with increased 2-O -sulphation, functionally inhibit haematopoietic progenitor cell migration in vitro. These data provide novel insight into the influence of highly sulphated HS in CXCL12 mediated haematopoietic progenitor cell migration and help to explain why HSCT engraftment has been historically low in MPSIH.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal