Abstract 4803

Background:

Hematopoietic stem and progenitor cells (HSPC) are located in a specialized microenvironment, called the stem cell niche, where their stem cell phenotype and differentiation are tightly regulated via interactions with the supporting mesenchymal stromal cells (MSC). These niches have been shown to be localized in regions with a lower oxygen tension which may also impact on the functional properties of MSC. For a better understanding to what extent hypoxia contributes to the establishment of an undifferentiated niche microenvironment that prevents inopportune differentiation of HSPC, we investigated MSC/HSPC co-cultures as well as MSC single cultures under low oxygen conditions.

Design and Methods:

Distribution, functional and phenotypical characteristics of CD34+ HSPC in hypoxic co-cultures (0.5% O2) were analyzed by flow cytometry. The effect of co-culture medium on the HSPC migration potential was tested in a transwell assay. The secretion of vascular endothelial growth factor A (VEGF-A), stromal-derived factor 1 (SDF-1), IL-6 and IL-8 by MSC was determined using ELISA whereas the expression of cell surface molecules was detected by flow cytometry. Moreover, the MSC proliferation as well as adipogenic and osteogenic differentiation was compared between hypoxic and normoxic culture conditions.

Results:

In the hypoxic co-culture, the adhesion of HSPC to the MSC layer was inhibited, whereas HSPC transmigration beneath the MSC layer was favoured. Increased VEGF-A secretion by MSC under hypoxic conditions, which enhanced the permeability of the MSC monolayer, was responsible for this effect. Furthermore, VEGF expression in hypoxic MSC was induced via hypoxia-inducible factor (HIF) signalling. Whereas IL-6 and IL-8 secretion were increased, SDF-1 expression by MSC was down-regulated under hypoxic conditions in a HIF-independent manner. The MSC immunophenotype which is characterized by expression of CD73, CD90, CD105, and CD166 was not significantly changed by hypoxia. Interestingly, a significant decrease of CD146 mRNA and protein expression levels was observed. The MSC proliferation was not significantly affected by lower oxygen tension. Culture of MSC in adipogenic induction medium for 14 days under hypoxia resulted in a reduced appearance of adipocyte-like cells containing lipid droplets and almost 50 % lower mRNA levels of fatty acid binding protein 2. The ALP activity as readout for osteogenic differentiation was decreased between 10% and 60% in hypoxic MSC.

Conclusions:

Low oxygen tension reduces the in vitro differentiation capacity and alters the cytokine secretion profile of primary human MSC. These functional changes may favour the homing and maintenance of quiescent HSC simulating the physiologically hypoxic niche conditions in vitro.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution