Abstract 4811

The number of hematopoietic stem and progenitor cells (HPCs) in cord blood units are limited and this can result in delayed engraftment. In vitro expansion of HPCs provides a perspective to overcome these limitations. Different combinations of cytokines as well as mesenchymal stromal cells (MSC) have been shown to separately support HPCs ex vivo expansion, but the combining effects are under evaluation. Data derived from ex vivo co-culture systems using MSC as a feeder layer suggest that cellular contacts could have a significant impact on expansion. We have evaluated the expansion rate of thawed cord blood samples (n=6) in a medium containing SCF (100 ng/ml) and G-CSF (100 ng/ml) plated over a pre-established bone marrow derived MSC layer in comparison to the absence of either MSC layer or cytokines. After 7 days cultures were demi-depopulated. At 14 days of culture adherent and non-adherent cells were harvested, counted and evaluated for antigens expression and clonogenic capacity. Immunophenotypic analysis was performed using CD34-PE, CD38-FITC, CD45-PE-Cy7, CD133-APC. Clonogenic assay was performed in semisolid methylcellulose culture medium (MethoCult, Stem Cell Technologies), CFU frequencies and total CFU numbers per cord blood sample were determined. After 14 days of culture, in the presence of MSC layer, an 11.2-fold increase (range 4.4–18.4) in total number of cells was observed, in comparison to a 4.8-fold increase (range1.1-10.35) in the absence of MSC layer. The presence of MSC layer generated a 4.3-fold increase (range 1.5–7.2) in the number of CD34 positive cells, compared to a 3.3-fold increase (range 0.9–5.7) in the absence of MSC; when considering the more immature CD34+/CD38 subpopulation the corresponding increase were 26.9-fold vs 2.85-fold, respectively. Moreover, the percentage of the CD34+/CD38 subpopulation was higher in the adherent compared to the non-adherent fraction (76% vs 15%). The selection effect given by the MSC layer was confirmed by the presence of hematopoiesis foci growing onto the MSC layer. Our data show that cord blood HPCs can be expanded in vitro, moreover the co-culture on a MSC layer shows a synergistic effect on TCN, CD34+ cells and on more primitive CD34+/CD38 cells. Therefore, a clinical protocol of cord blood HPCs and MSC co-culture could represent a promising approach for improving engraftment kinetics in cord blood transplant recipients.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution