Abstract
Abstract 188
Introduction of the anti-CD20 antibody rituximab has led to remarkable progress in the development of targeted therapies for CLL and other B-cell malignancies. Despite prolonging patient survival, therapies targeting CD20 have not been curative. In recent years, alternative targets for therapeutic antibodies have emerged. One of the most promising targets has been CD37, which is highly expressed on malignant B-cells in chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma. The recent interest in this target has led to the generation of novel anti-CD37 therapeutics that could benefit from more extensive preclinical evaluation. However, preclinical development of these agents has been limited by the absence of appropriate leukemia animal models that provide targets expressing human CD37 (hCD37). Here we describe the development and characterization of a transgenic mouse where CLL-like leukemic B-cells express hCD37 and aggressively transplant into syngenic hosts. We demonstrate the utility of this unique mouse model by evaluating the in vivo efficacy of IMGN529, a novel antibody-drug conjugate targeting hCD37 that consists of the CD37-targeting K7153A antibody linked to the maytansinoid DM1 via the thioether SMCC linker.
The hCD37 transgenic mouse (hCD37-Tg) founder lines were generated by conventional methodology at the OSU Transgenic Facility. B-cell specific expression of hCD37 is driven by immunoglobulin heavy chain promoter and Ig-μ enhancer elements. Founder lines were evaluated by RT-PCR and flow cytometry to confirm RNA and protein expression, respectively. These lines were then crossed with the EμTCL1 mouse model of CLL to generate hCD37xTCL1 mice that develop CD5+CD19+hCD37+ leukemia. For in vivo studies, splenocytes from a leukemic hCD37xTCL1 donor were injected i.v. into healthy hCD37-Tg mice. Mice were randomly assigned to the following treatment groups (n=8–10 per group): IMGN529 conjugate, its K7153A antibody component, or negative controls (isotype antibody-DM1 conjugate or trastuzumab). Upon diagnosis of leukemia, a 10 mg/kg dose was administered i.p. and repeat doses were given 2 times per week for 3 weeks (70 mg/kg total). Peripheral blood disease was monitored by flow cytometry, using counting beads to obtain the absolute number of leukemic CD5+CD19+ B-cells. CD37 expression levels were determined by quantitative flow cytometry. In vitro cytotoxicity was evaluated after 24 hour incubation by flow cytometry with Annexin V and propidium iodide staining.
IMGN529 and its K7153A antibody component demonstrated comparable in vitro activity against freshly isolated human CLL cells even in the absence of cross-linking agents (mean IMGN529 cytotoxicity=50.04% vs. 48.85% for K7153A; p=0.175; n=9). Both compounds also demonstrated cytotoxicity against hCD37 Tg B-cells ex vivo in a cross-linking dependent manner, and while expression of hCD37 in hCD37-Tg animals was B-cell specific, the expression levels were substantially lower than those observed in human CLL cells. In vivo studies with transferred hCD37xTCL1 splenocytes demonstrated rapid and complete depletion of CD5+CD19+ leukemic B-cells in response to IMGN529 conjugate, but not K7153A antibody treatment. After 1 week of IMGN529 treatment, peripheral blood leukemia was nearly undetectable and previously detected massive splenomegaly was no longer palpable. In contrast, leukemic counts and spleen sizes continued to increase in control cohorts.
In summary, our group has generated a mouse model that develops a transplantable CD5+CD19+ leukemia expressing hCD37. We demonstrate the utility of this model for both in vitro and in vivo testing of therapeutics targeting hCD37. In addition, preclinical mouse studies expose the robust anti-leukemic effects of IMGN529 in this in vivo model of aggressive B-cell malignancy, despite the relatively low expression of hCD37 on the leukemic B-cells. Our engraftment model shows that IMGN529 is capable of eliminating widespread and highly proliferative mouse leukemia by a mechanism that is both CD37 antigen and conjugate dependent. Therefore, we propose that this novel therapeutic may also exhibit substantial efficacy in a wide range of human B-cell malignancies, even those with relatively low CD37 expression.
[This work was supported by NIH (NM, JCB), LLS (NM, JCB) and Pelotonia (KAB)].
Deckert:ImmunoGen Inc.: Employment.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal