Abstract
Abstract 2382
Epigenetic modification process is required for the development of hematopoietic cells. DNA methyltransferase DNMT3A, responsible for de novo DNA methylation, was newly reported to have a high frequency of mutations in hematopoietic malignancies. Conditional knock-out of DNMT3A promoted self-renewal activity of murine hematopoietic stem cells (HSCs). However, the role of mutated DNMT3A in hematopoiesis and its regulative mechanism of epigenetic network mostly remain unknown. Here we showed that the Arg882His (R882H) hotspot locus on DNMT3A impaired the normal function of this enzyme and resulted in an abnormal increase of primitive hematopoietic cells. In both controlled in vivo and in vitro assays, we found that the cells transfected by R882H mutant promoted cell proliferation, while decreased the differentiation of myeloid lineage compared to those with wild type. Analysis of bone marrow (BM) cells from mice transduced by R882H reveals an expansion of Lin−Sca-1+C-kit+ populations and a reduction of mature myeloid cells. Meanwhile, a cluster of upregulated genes and downregulated lineage-specific differentiation genes associated with hematopoiesis were discovered in mice BM cells with R882H mutation. We further evaluated the association of mutated DNMT3A and HOXB4 which was previously detected to be highly expressed in clinical samples carrying R882 mutation. Compared with wildtype DNMT3A, R882H mutation disrupted the repression of HOXB4 by largely recruiting tri-methylated histone 3 lysine 4 (H3K4). Taken together, our results showed that R882H mutation disturbed HSC activity through H3K4 tri-methylation, and transcriptional activation of HSC-related genes.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal