Abstract
Abstract 3077
Since prolonged thrombocytopenia (PT) is an independent risk factor for poor clinical outcome after allogeneic hematopoietic stem cell transplantation (allo-HSCT), the underlying mechanisms need to be understood in order to develop selective treatments. Previous studies1–4 have suggested that abnormalities in B cells may play a role in the pathogenesis of PT. However, abnormalities in B cells alone do not fully explain the complete pathogenic mechanisms of PT. Our previous studies5 showed that the frequency of megakaryocytes with a ploidy value ≤ 8N was significantly increased in patients who developed PT after allo-HSCT compared to the control group. Mechanisms concerning the megakaryocyte hypoplasia in PT after allo-HSCT are not well understood.
PT was defined as a platelet count ≤80 × 109/L for more than 3 months after HSCT, recovery of all other cell counts, and no apparent cause for thrombocytopenia, such as aGVHD, disease recurrence, CMV infection, or antiviral drug treatment at three months post-HSCT when all other blood cell counts had return to normal.5 We analyzed T cell subsets in bone marrow (BM) and peripheral blood (PB) from allo-HSCT recipients with and without PT (n = 23 and 17, respectively) and investigated the expression characteristics of homing receptors CX3CR1, CXCR4 and VLA-4 by flow cytometry. Futhermore, Mononuclear cells (MNCs) from PT patients and controls were cultured with and without autologous CD8+ T cells in vitro, and clarify the effect of activated CD8+ T cells on the ploidy and apoptosis of megakaryocytes in the bone marrow.
The results demonstrated that the percentage of CD3+ T cells in the BM was significantly higher in PT patients than the experimental controls (76.00 ± 13.04% and 57.49 ± 9.11%, respectively, P < 0.001), whereas this difference was not significant for the PB (71.01 ± 11.49% and 70.49 ± 12.89%, respectively, P = 0.911). While, some T cell subsets in the BM and PB from allo-HSCT recipients with PT were not significantly different from that of the experimental control group, such as CD8+ T cells, CD4+ T cells, CD4+ CD25bright T cells (regulatory T cells), CD44hi CD62Llo CD8+ T cells and naive T cells (CD11a+ CD45RA+). Furthermore, the surface expression of homing receptor CX3CR1 on BM T cells (64.16 ± 14.07% and 37.45 ± 19.66%, respectively, P < 0.001) and CD8+ T cells (56.25 ± 14.54% and 35.16 ± 20.81%, respectively, P = 0.036), but not in blood, were significantly increased in PT patients compared to controls. For these two groups of patients, the surface expression of CXCR4 and VLA-4 on T cells and CD8+ T cells from both BM and PB did not show significant differences. Through the study in vitro, we found that the activated CD8+ T cells in bone marrow of patients with PT might suppress apoptosis (MNC group and Co-culture group: 18.02 ± 3.60% and 13.39 ± 4.22%, P < 0.05, respectively) and Fas expression (MNC group and Co-culture group: 21.10 ± 3.93 and 15.10 ± 2.33, P <0.05, respectively) of megakaryocyte. In addition, megakaryocyte with a ploidy value ≤ 8N (MNC group: 40.03 ± 6.42% and 24.54 ± 4.31%, respectively, P < 0.05) was significantly increased in patients with PT compared to the control group.
In conclusion, an increased surface expression of CX3CR1 on T cells may mediate the recruitment of CD8+ T cells into the bone marrow in patients with PT who received an allo-HSCT. Moreover, CD8+CX3CR1+ T cells, which can have significantly increased numbers in bone marrow of patients with PT, likely caused a reduction in the megakaryocyte ploidy, and suppressed megakaryocyte apoptosis via CD8+ T cell-mediated cytotoxic effect, possibly leading to impaired platelet production. Therefore, treatment targeting CX3CR1 should be considered as a reasonable therapeutic strategy for PT following allo-HSCT.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal