Abstract
Abstract 4102
Donor leucocyte infusion (DLI) after alloHSCT can induce strong graft-versus-leukemia (GvL) effects, inspiring investigators to examine this approach for solid tumors resistant to conventional therapies (Grivas et al. Curr Clin Pharmacol. 2011). However, DLI produces graft-versus-host disease (GvHD). Recipient-type leucocyte infusion (RLI) is currently being explored clinically as a means to induce GvL without risk of GvHD (clinicaltrials.gov; Rubio et al. Blood 2003; De Somer et al. Haematologica. 2011). High-risk neuroblastoma carries a bleak prognosis despite aggressive treatment with chemo-, radiotherapy and autologous HSCT. Clinical observations in such patients suggest that alloHSCT may produce a graft-vs-neuroblastoma effect (Kanold et al. Bone Marrow Transplantation. 2008). In mice, alloHSCT delays local neuroblastoma growth, and adoptive transfer of tumor-pulsed donor dendritic cells and donor leucocytes enhances this effect (Ash et al. Cancer Immunol Immunother. 2009, Br J Cancer 2010). In this study, we show that not only DLI by itself, but also RLI enhances the local anti-neuroblastoma effect of alloHSCT in mice.
MHC-mismatched [C57BL/6 (H-2Kb) → A/J (H-2Kk)] bone marrow chimeras were given a subcutaneous inoculation with 1 × 106 Neuro2A cells (A/J neuroblastoma) on day 14 post HSCT. On day 21, we performed adoptive transfer of 10 × 106 donor splenocytes (DLI), 50 × 106 recipient splencoytes (RLI) and/or 1 × 106 recipient-type MACS-isolated DX5+ NK cells. We measured tumor volume twice weekly using a caliper (volume = width2 × length × 0,4). Validation of this model showed progressive tumor growth and mortality as a result of metastasis. Peripheral blood chimerism and tumor infiltrating lymphocytes were studied using flow cytometry.
AlloHSCT chimeras developed mixed donor T cell chimerism by day 21 and full donor chimerism by day 76 post HSCT. DLI induced a conversion to full donor T cell chimerism and RLI induced a complete loss of donor T cells chimerism, both within 1 week. AlloHSCT chimeras showed reduced local growth of subcutaneous neuroblastoma tumors relative to synHSCT chimeras. This delay in tumor growth was enhanced not only by DLI, but also by RLI; DLI provoked lethal GvHD whereas mice treated with RLI remained healthy. Within tumor-infiltrating lymphocytes, T and NK cell chimerism mirrored the systemic chimerism changes seen after RLI and DLI, associated with an increased intratumoral CD8/CD4 ratio, CD8+ T-cell IFN-γ-expression and NK-cell Granzyme B-expression. This indicates a close relation between lymphohematopoietic alloreactivity and the anti-tumor effect, and suggests that the anti-tumor mechanism of DLI and RLI involves not only CD8+ T cells but also cytotoxic NK cells. The baseline antitumor effect seen in alloHSCT chimeras was also accompanied by increased Granzyme B expression by intratumoral NK-cells, supporting a role for NK cells also in this baseline antitumor effect. In vivo Neuro2A-inoculation experiments in (poly(I:C)-treated) C57BL/6, TCR−/− C57BL/6 and A/J mice, and in vitro NK cytotoxicity experiments showed that 1° donor T cells critically resist Neuro2A cells, 2° donor NK cells exhibit spontaneous cytotoxic reactivity to Neuro2A that is enhanced by NK activation, but also that 3° syngeneic NK cells may acquire reactivity to Neuro2A cells provided they are activated. Interestingly, when RLI was given, the intratumoral NK-cell frequency declined markedly, and adoptive transfer of additional NK cells obtained from naïve A/J mice enhanced the local antitumor effect of RLI. This supports the hypothesis that, in addition to donor NK cells, also syngeneic NK cells can play a critical role in mediating a growth-limiting effect on local neuroblastoma. Along this line, we observed that also in synHSCT mice, which showed a reduced local neuroblastoma growth relative to naïve mice, the intratumoral NK cells showed increased FasL-expression.
These are the first experimental data showing that RLI after alloHSCT may induce immune-mediated anti-neuroblastoma effects, and that NK cells, in particular syngeneic NK cells, may play a critical role herein. Our data support the exploration of post alloHSCT adoptive cell therapy with recipient-type T and NK cells to produce enhanced immune antitumor effects for high-risk neuroblastoma, and potentially for other solid tumors that are unresponsive to traditional therapies, without the risk of GvHD.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal