Abstract
We investigate the role of Ezh2 in neutrophil function using murine progenitor cells differentiated into neutrophils lacking the Ezh2 gene. Ezh2 is the catalytic component of the polycomb repressive complex 2, which methylates lysine 27 of histone H3. It is frequently disrupted in myelodysplastic syndromes (MDS) leading to loss of function (Ernst et al., 2010). Mutations in EZH2 are found in 6% of MDS patients and while not strongly linked to cytopenias or blast proportion, they are independently associated with worse overall survival compared to patients with wildtype EZH2 (Bejar R. et al., 2011 and 2012). We hypothesize that Ezh2 mutations may cause qualitative defects in myeloid cells that impact their function and could contribute to the adverse prognosis observed in EZH2 mutant MDS.
Bone marrow from Ezh2 null (Ezh2-/-) and littermate control mice (WT) were transduced with HOXB8 fused to the estrogen receptor ligand-binding domain to produce immortalized myeloid progenitor cells. Removal of estrogen from the media allows these cells differentiate into mature neutrophils (Wang G.G., 2006). Differentiated cells were characterized for surface markers by flow cytometry and for gene expression by PCR of mRNA. Spontaneous cell death was measured by annexin/PI staining. Cell cycle patterns were determined by measuring the red emission of PI. Chemotactic function was assessed by counting cells that migrated across a transwell in presence/absence of the attractant zymosan. For phagocytosis experiments, cells were incubated with Fluoresbrite YG carboxylate beads at 37°C or 4°C. Reactive oxygen species (ROS) generation was measured by the oxidation of dihydrorhodamine 123 into fluorescent rhodamine 123.
Estrogen withdrawal caused differentiation of both WT and Ezh2-/- lines into cells with mature neutrophil morphology after six days (Figure 1a). Both differentiated lines expressed the neutrophil surface markers CD11b and CD62L and the neutrophil-specific genes lactoferrin and Itgb2l.
Ezh2-/- cells had an increased rate of spontaneous cell death compared to WT in undifferentiated (32.81% vs. 20.33%) and mature cells (32.82% vs. 14.23%). Nevertheless, both progenitor cell lines showed similar cell cycle patterns, demonstrating that Ezh2 absence had no other effect on cell cycle progression.
Ezh2-/- neutrophils failed to migrate towards zymosan (Figure 1b). Expression of Tlr2, which binds zymosan, and other Toll-like receptors (Tlr4/5/9) were similar between the differentiated cell lines. Cells incubated with FITC-zymosan at 37°C showed no fluorescence differences between cell lines, indicating similar adherence. Experiments with neutrophils from an MDS patient with homozygous EZH2 mutations demonstrated a similar migration defect. Additional studies in MDS patient samples are ongoing and will be presented.
Phagocytosis was reduced in Ezh2-/-cells. Unstimulated, the number of cells ingesting and adhering YG-beads was significantly greater with WT cells than with Ezh2-/-cells. When activated with fMLP, both lines showed increased adherence of YG-beads but the number of phagocytosing Ezh2-/- cells was reduced. The average number of beads ingested by each cell was lower for Ezh2-/- cells compared to WT (5.95 vs 2.94, p < 0.001) in resting cells, and 9.47 vs. 3.73 in fMLP-activated cells, p < 0.01.
The fraction of Ezh2-/- neutrophils generating ROS when stimulated with PMA is 2.4-fold higher than for WT cells. ROS production was greatly reduced in the presence of diphenyleneiodonium (DPI), confirming the role of NADPH oxidase in the generation of ROS.
Our results indicate impaired function of neutrophils derived from Ezh2-/- mice, demonstrating increased spontaneous cell death, impaired migration, decreased phagocytosis, and overproduction of ROS. Qualitative defects observed in neutrophils deficient for EZH2 may help explain the adverse prognosis associated with these mutations in MDS patients.
Bejar:Genoptix: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity’s Board of Directors or advisory committees.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal