Abstract
Current treatments for acute myeloid leukemia (AML) often fail to induce long-term remissions and are also toxic to normal tissues, prompting the need to develop new targeted therapies. One attractive cellular pathway with therapeutic potential is nuclear export, which is mediated in part by nuclear exporter CRM1/XPO1. XPO1 mediates the transport of ∼220 proteins and several mRNAs and is the sole nuclear exporter of the major tumor suppressor and growth regulatory proteins p53, p73, FOXO, IkB/NF-kB, Rb, p21, and NPM. Our findings demonstrate that novel irreversible inhibitors of XPO1, termed Selective Inhibitors of Nuclear Export, or SINE, induce rapid apoptosis in 12 AML and 14 T-ALL cell lines with IC50s of 15-474 nM. In the SINE-sensitive cell lines, BCL2 overexpression suppresses SINE-induced apoptosis, indicating its intrinsic pathway mediation. Oral administration of clinical XPO1 inhibitor, Selinexor (KPT-330), at 15 or 25 mg/kg, induced remarkable growth suppression in MV4-11 human AML cells and MOLT-4 human T-ALL cells engrafted in immunodeficient NSG mice with negligible toxicity to normal mouse hematopoietic cells after 35 days of treatment. Bone marrow biopsies of selinexor - treated mice were remarkable in that they showed normal hematopoietic cell morphology and cellularity after 35 days of treatment. Significant survival benefit was observed in mice treated with selinexor, compared to vehicle-treated mice. Selinexor is now in Phase 1 clinical trial in patients with AML and other hematological malignancies (NCT01607892). Recently, we have established primagraft models of AML, using primary leukemia blasts isolated from AML patients at diagnosis transplanted into immunocompromised NSG mice. We demonstrated that selinexor exhibits striking anti-leukemic activity against different subtypes of primary AML, including AML-M4; FLT3-ITD and complex karyotype subtypes of the disease. To determine whether selinexor targets leukemia-initiating cells (LICs) of primary AML, we re-transplanted serial dilutions of human CD45+ cells isolated from leukemic mice treated with either vehicle or selinexor. The preliminary results of our re-population assays indicate that selinexor greatly diminished LIC frequency in AML-M4; FLT3-ITD AML (∼6 fold) and complex karyotype disease (∼100 fold). These findings demonstrate that selinexor may represent a novel targeted therapy for the treatment of AML, which spares normal hematopoietic stem and progenitor cells.
McCauley:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Patents & Royalties. Kauffman:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties. Shacham:Karyopharm Therapeutics Inc.: Employment, Equity Ownership, Membership on an entity’s Board of Directors or advisory committees, Patents & Royalties.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal