Abstract
This work aims to develop a new strategy to generate murine osteoclasts in vitro using IL-3-dependent cells prepared by 6-day IL-3 treatment of murine bone marrow cells
1. Here, we describe an alternative method for in vitro generation of osteoclasts, which involves the use of interleukin (IL)-3-dependent murine bone marrow cells. Bone marrow cells, isolated from 6- to 8-week old C57BL/6 were cultured in α-MEM containing 10% FBS in tissue culture dishes overnight to remove stromal cells. Then, non-adherent bone marrow cells were harvested and continued in α-MEM containing 10% FBS without (control) or with IL-3 (1 ng/ml) for 6 days. While no cells survived in the control culture after the 6-day culturing, the IL-3-treated culture gave rise to a significant number of surviving cells. These IL-3-depedent cells were capable of differentiating to osteoclasts in response to M-CSF and RANKL stimulation. Moreover, these IL-3-dependent cells can be further expanded by plating them in non-treated plastic dishes followed with M-CSF treatment; they continued to survive and proliferate in non-treated plastic dishes in the presence of M-CSF for up to 4 days. After 4-day M-CSF treatment, these cells can be lifted by EDTA, and they were still able to differentiate into osteoclasts upon subsequent stimulation of M-CSF and RANKL.
2. We performed the in vitro bone resorption assay, Semiquantitative Reverse Transcription (RT)-PCR, Western Analysis, Infection of Murine Bone Marrow Cells (BMCs) to test whether the osteoclasts generated from IL-3-dependent murine bone marrow cells are different from the osteoclasts generated from traditional method.
1. IL-3 can maintain the survival of murine bone marrow cells for up to 6 days and these cells still keep their capacity to generate osteoclasts. The capacity of IL-3-dependent cells to form osteoclasts decreases with time of IL-3 treatment and IL-3 dependent cells can be further expanded by M-CSF without significant loss of the osteoclastogenic potential.
2. IL-3-dependent cells can form functional osteoclasts. RANKL induces the expression of osteoclast genes in IL-3-dependent cells. RANKL activates some of RANK signaling pathways in IL-3-dependent cells. Importantly, we found that IL-3 dependent murine bone marrow cells can be infected by retrovirus encoding GFP.
1) We have developed a new strategy to generate murine osteoclasts in vitro using IL-3-dependent cells prepared by 6-day IL-3 treatment of murine bone marrow cells.
2) IL-3-dependent cells can be infected by retrovirus, permitting further experimental manipulations to express or knock down genes in IL-3-dependent cells for studying the molecular mechanism controlling differentiation and proliferation of osteoclast precursors or delineating molecular events in early osteoclastogenesis.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal