Introduction

TCF3 encodes for E2A protein, which belongs to the helix loop helix transcription factor family. E2A activates transcription of downstream genes by binding to E-box motifs as a homo or hetero dimer. E2A plays an important role in B lymphocyte development. Therefore deletion or mutations in TCF3 or even lowered activity of E2A are causes of B cell leukemia and lymphomas. Recently, three mutations V557E, D561E and N551K in E2A were isolated in Burkitt’s lymphoma (Schmitz, Young et al. 2012). The first two mutations are present in the homo dimerization region of E2A while N551K is present in the DNA binding region. Though the paper enumerated role of TCF3 in Burkitt’s lymphoma but the significance of these TCF3 mutations or mechanism needed further characterization. We hypothesized that these TCF3 mutations have an alternate mechanism as compared to wild type TCF3 and therefore may affect B cell development.

Methods

We characterized three TCF3 mutants by cloning them into in MIGR1 backbone using TOPO cloning. E2A activity was measured using an E2A-specific luciferase reporter assay in 293T cells. DNA binding activity was measured using a DNA protein binding colorimetric assay.

Results

V557E and D561E mutants have lower activity as compared to wild type E2A as studied using E2A-specific luciferase reporter assay; while N551K showed no activity in the same assay as compared to wild type E2A activity. Similarly V557E and D561 form weaker bonds with the E box motifs while N551K showed no DNA binding activity as studied using colorimetric DNA-protein binding assay. The plasmid expressions were verified using western blot analysis.

Conclusion

Our findings suggest mutations V557E and D561E may follow a similar pathway as wild-type E2A but have lower activity. The N551K mutation has an alternate pathway to wild type TCF3 that may impact B cell proliferation, survival and development.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution