Rationale

Myelodysplastic syndromes (MDS) are clonal stem cell disorders that disrupt orderly maturation of multiple hematopoietic lineages. Several studies have suggested that maturation of precursor B cells (hematogones) is also abnormal in MDS. As a result, the presence of normal numbers or increased precursor B cells in bone marrow (BM) is frequently used as a diagnostic feature arguing against a diagnosis of MDS. We compared the presence of myeloid-associated gene mutations and myeloid maturation abnormalities with qualitative and quantitative precursor B cell findings in BM samples submitted for workup of cytopenias or MDS.

Methods

Seventeen BM aspirate samples with <5% blasts submitted for cytopenia or MDS evaluation were compared with 10 samples having 5% or more blasts and changes diagnostic of MDS or AML. Mutation analysis was performed on genomic DNA using a targeted exome sequencing assay. This assay employs a TruSeq custom amplicon design on the MiSeq platform (Illumina, San Diego, CA). The assay covers the commonly mutated areas of 19 myeloid-associated genes. Somatic mutation status was assigned based on mutation levels, previous association with myeloid neoplasia, and no prior identification in public or internal databases as a normal sequence variant. Flow cytometry using 6-color (CD19/CD34) and 8-color (CD19/10) formats was used to assess lymphoblasts; CD34/13 was used to assess myeloblasts; and CD11b, CD13, CD16, and CD38 were used to assess abnormalities in myelopoiesis.

Results

 Among the 17 BM samples submitted for cytopenia or MDS evaluation that had <5% blasts, 7 (41%) had immunophenotypic myeloid maturation abnormalities. Ten (59%) of the 17 cases had at least one myeloid-associated somatic mutation, with TET2 and ASXL1being the most commonly mutated genes. The ratio of myeloblasts to B-lymphoblasts, calculated using either CD10 or CD19, was >10:1 in 10/17 (59%) cases. Nine of the 17 (53%) cases had virtually no precursor B cells detected. Discrete abnormalities in more mature myeloid forms were seen in 7/10 (70%) cases with low numbers of B-lymphoblasts but in none of the 7 cases with significant numbers of B-lymphoblasts. MDS-associated mutations were more common in cases with rare B-lymphoblasts (7/9) than in those with higher percentages of precursor B cells (3/8), but the difference did not reach statistical significance (P = 0.15).  Genes mutated in the group with B-lymphoblasts present included ASXL1 (3 cases), DNMT3A (2), TET2 (1) and TP53 (2). Two of these mutated cases presented with isolated thrombocytopenia. By comparison, myeloblast/lymphoblast ratios were >50:1 in all 10 unequivocal MDS/AML samples (>5% blasts); 8 (80%) of these cases had MDS-associated mutations, and 4 (50%) had mutations in multiple genes.

Conclusions

Decreases in BM precursor B cells in cases of possible low-grade MDS were usually, but not always, associated with the presence of MDS-associated mutations. However, cases with normal or increased precursor B cell numbers also showed MDS-associated mutations although immunophenotypic evidence of myeloid maturation abnormalities was not seen in this group. The identification of a subgroup of cytopenic patients with likely pathogenic mutations in bone marrow precursors but minimal phenotypic evidence of myeloid dysplasia may indicate clonal abnormalities primarily located outside the granulocyte or common stem precursor populations, e.g. restricted to the megakaryocytic lineage. Therefore, the presence of intact precursor lymphoblast and myeloid maturation by higher-dimensional flow cytometry as a primary criterion to argue against a diagnosis of low-grade MDS needs further evaluation, especially when granulocytopenia is absent.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution