Abstract
Erythroid RNAs, like their nonerythroid counterparts, are subject to post-transcriptional processing events that critically impact their coding capacity for the erythroid proteome. Previous studies have shown that differentiating human and mouse erythroblasts execute an extensive and dynamic alternative splicing program involving regulation of numerous alternative exons. Here we report that controlled excision of selected introns is also an important component of the erythroblast alternative splicing program. Intron retention (IR) patterns in differentiating human erythroblasts were determined via RNA-seq analysis of FACS-purified erythroblast populations. Comparison of IR among erythroblast populations and between erythroblasts and other hematopoietic cells suggests that regulation of IR occurs in a differentiation stage- and tissue-specific manner. For example, there was little overlap of intron retention events in erythroblasts with those reported in differentiating granulocytes. Moreover, the IR profile of proerythroblasts differed substantially from that in orthochromatic erythroblasts, with IR generally increasing in the more mature cells that are preparing for enucleation. IR in erythroblasts affected numerous genes functioning in RNA processing, iron homeostasis and heme biosynthesis, protein translation, and membrane properties. Mature erythroblasts exhibited retention of introns in several human disease genes including SF3B1, a splicing factor often mutated in myelodysplasia; TFR2, encoding transferrin receptor 2 that is mutated in a form of hemochromatosis; and FUS, an RNA binding protein implicated in ALS. Inspection of intronic RNA-seq reads in >60 genes with IR revealed that single or multiple introns can be retained within a transcript; however, other introns within the same genes, and indeed the great majority of introns in erythroblast-expressed genes, are efficiently spliced with minimal or no IR. Retained introns may be flanked by either constitutively or alternatively spliced exons, suggesting different regulatory mechanisms. Ongoing studies will explore whether IR in some transcripts might function to down-regulate gene expression by introduction of premature termination codons that induce nonsense-mediated decay, or alternatively, whether IR transcripts could represent a reserve of nearly-completed mRNAs that can be processed in response to appropriate physiological stimuli. In sum, these results suggest that a highly regulated IR program plays an important role in erythroid differentiation.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal