Abstract
Tissue factor pathway inhibitor (TFPI) is the major inhibitor of the tissue factor initiated extrinsic coagulation pathway in blood and is intact in patients with hemophilia. The inhibition of TFPI may restore hemostasis in patients with hemophilia. BAY 1093884 is a fully human monoclonal antibody against TFPI developed as a bypass agent for hemophilia patients with or without inhibitors. It restores thrombin burst for stable clot formation in hemophilic conditions in vitro. The goal of these studies was to determine the in vivo acute efficacy of BAY 1093884 in the hemophilia A (HemA) mouse.
In the first study, the acute efficacy of BAY 1093884 (3−100 mg/kg) was demonstrated and compared with full-length recombinant factor VIII (rFVIII; 10−100 IU/kg) by a HemA mouse tail clip model, in which blood loss from a severed tail tip was measured over 45 minutes after injury (n=12−27 mice/group). Naive C57/BL6 and HemA mice were used as positive and negative controls, respectively. Whereas isotype control antibody−treated HemA mice had median blood loss of 870 μL, increasing doses of BAY 1093884 to 50 and 100 mg/kg significantly reduced blood loss to a median of 55 and 5 μL. The dose required to reduce blood loss by 50% was 18 mg/kg, approximately equivalent to the efficacy of 20 IU/kg rFVIII.
In a second study, we characterized the combined action of BAY 1093884 and activated recombinant factor VII (rFVIIa; n=10−25 mice/group). Low doses of BAY 1093884 (2.5 mg/kg) and rFVIIa (0.5 and 1.0 mg/kg) with minimal efficacies were tested. Untreated HemA mice had median blood loss of 860 μL. As stand-alone treatments, 2.5 mg/kg BAY 1093884, 0.5 mg/kg rFVIIa, and 1 mg/kg rFVIIa provided minimal blood loss protection, with bleeding volume reduced to 675, 830, and 770 μL, respectively. In comparison, the combination of 2.5 mg/kg BAY 1093884 with 0.5 mg/kg rFVIIa or 1.0 mg/kg rFVIIa reduced median blood loss to 215 and 35 μL, respectively. These results showed a combination effect of BAY 1093884 and rFVIIa in this severe acute efficacy model.
These studies demonstrate that BAY 1093884 could potently reduce acute blood loss in HemA mice and may offer a new treatment option for hemophilia patients.
Xu:Bayer HealthCare LLC: Employment. Koellenberger:Bayer Pharma AG: Employment. Laux:Bayer Pharma AG: Employment. Kauser:Bayer HealthCare LLC: Employment. Sim:Bayer HealthCare LLC: Employment.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal