Abstract
Abstract
Tumor specific or related antigen cytotoxic lymphocyte (CTL) have been identified in chronic myeloid leukemia patients, however, whether they are constituted by specific type of T cell receptor chains has not been illustrated so far. Previous studies have reported abnormal TCR repertoires and clonally expanded TCR Vβ T cells in chronic myeloid leukemia in chronic phase (CP-CML). In this study, we investigated the distribution and clonality of the TCR Vβ repertoire in 5 CML patients in blast crisis (BC-CML) and one in acceleration phase (AP-CML) with ABL kinase domain mutations (KDMs) including T315I, E255K, F317L+S417Y, Y-253F and L387M+T-315A. Examination of TCR Vβ expression and clonality was performed by reverse transcription-polymerase chain reaction (RT-PCR) combined with GeneScan analysis. Significantly skewed TCR Vβ repertoires were observed in those patients, and 4 to 8 oligoclonally expanded TCR Vβ subfamilies could be identified in each sample, which distributed in 15/24 different subfamilies (TCR Vβ4, Vβ5, Vβ6, β8, Vβ9, Vβ10, Vβ15, Vβ16, Vβ17, Vβ18, Vβ19, Vβ21, Vβ22, Vβ23, Vβ24). Intriguingly, a relatively highly expanded Vβ9 clone with the same length as CDR3 (139 bp) was found in all three CML patients in lymphoid blast crisis (LBC-CML) who had different KDMs, but the clone was not detected in the other two CML patient in myeloid blast crisis (MBC-CML) or the one CML patients in accelerated phase. In conclusion, restricted TCR Vβ repertoire expression and decreased clone complexity was a general phenomenon in the BC-CML patients with different KDMs, indicating the T-cell immunodeficiency status of these patients, and clonally expanded Vβ9 T cell clones may represent a specific immune response to leukemia-associated antigens in LBC-CML patients.
Li:The Foundation for High-level Talents in Higher Education of Guangdong, China ([2013]246-54),and the Guangzhou Science and Technology Project Foundation (201510010211): Research Funding; National Natural Science Foundation of China (81270604, U1301226, and 81400109), the Guangdong Natural Science Foundation (S2013040016151 and S2013020012863): Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal