Abstract
Selinexor (KPT-330) is a first in class nuclear transport inhibitor of exportin-1(XPO1) currently in advanced clinical trials to treat patients with solid and hematological malignancies. To determine how selinexor might impact anti-tumor immunity, we analyzed immune homeostasis in mice treated with high selinexor doses (15 mg/kg, three times a week: M, W, F) and found disruptions in T cell development, a progressive loss of CD8 T cells and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by high doses of selinexor, suggesting that normal immune homeostasis could recover. We found that high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week (7.5 mg/kg, M, W, F) was not able to restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that XPO1 function is required for T cell development and function. We then determined the minimum concentration of selinexor required to block T cell activation, and showed that T cell inhibitory effects of selinexor occur at levels above 100nM, corresponding to the first 24 hours post-oral dosing of 10 mg/kg. In a model of implantable melanoma, we used selinexor treatment at the clinically relevant dosing regimen of 10 mg/kg with a 5-day drug holiday (M, W selinexor treatment). After two weeks of treatment, tumors were harvested and tumor infiltrating leukocyte (TIL) populations were analyzed. This treatment led to intratumoral IFNg+, granzyme B+ cytotoxic CD8 T cells that were comparable to vehicle treated mice. Overall, selinexor treatment leads to transient inhibition of T cell activation but the clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T cell functioning and development of anti-tumor immunity. These results provide additional support to the recommended selinexor phase 2 dosing regimen, as was determined recently (Razak et al. 2016).
Klebanov:Karyopharm Therapeutics: Employment, Equity Ownership. Kashyap:Karyopharm Therapeutics: Employment, Equity Ownership. Shacham:Karyopharm Therapeutics: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Landesman:Karyopharm Therapeutics: Employment, Equity Ownership. Dougan:Karyopharm Therapeutics: Consultancy. Dougan:Karyopharm Therapeutics: Consultancy.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal