Abstract
Background: While red blood cell (RBC) transfusion can be beneficial, exposure to allogeneic RBCs can result in the development of RBC alloantibodies that can make it difficult to obtain compatible RBCs for future transfusions. Aside from phenotype matching protocols, no strategy currently exists that is capable of preventing RBC alloimmunization following therapeutic transfusion. As RBC alloantigens represent diverse determinants capable of driving distinct immune pathways, common immunological nodes must be identified in order to successfully prevent RBC alloimmunization against a variety of different alloantigens. Recent results demonstrate that marginal zone (MZ) B cells mediate anti-KEL antibody formation in the complete absence of CD4 T cells. However, whether MZ B cells similarly regulate RBC alloantibody formation against other RBC alloantigens remains unknown. As a result, we examined the role of MZ B cells and CD4 T cells in the development of RBC alloantibodies following exposure to the HOD (hen egg lysozyme, ovalbumin and duffy) antigen.
Methods: Each recipient was transfused with HOD or KEL RBCs following either MZ B cell or CD4 T cell depletion using a cocktail of MZ B cell (anti-CD11a and anti-CD49d) or anti-CD4 depleting antibody, 4 and 2 days prior to transfusion. Control groups received isotype control injections in parallel. MZ B cell deficient (CD19cre/+ X Notch2flx/flx) and CD4 T cell deficient (MHC class II knockout) recipients were also used to examine the role of MZ B cells and CD4 T cells, respectively. Serum collected on days 5 and 14 post-transfusion was evaluated for anti-HOD or anti-KEL antibodies by incubating HOD or KEL RBCs with serum, followed by detection of bound antibodies using anti-IgM and anti-IgG and subsequent flow cytometric analysis. Evaluation of antibody engagement and overall survival of HOD or KEL RBCs was accomplished by labeling RBCs with the lipophilic dye, DiI, prior to transfusion, followed by examination for bound antibody and RBC clearance on days 5 and 14 post-transfusion by flow cytometry.
Results: Similar to the ability of MZ B cell depletion to reduce anti-KEL antibody formation following KEL RBC exposure, depletion of MZ B cells significantly reduced anti-HOD IgM and IgG antibodies following HOD RBC transfusion. In contrast, injection of recipients with isotype control antibodies in parallel failed to prevent alloantibody formation following HOD or KEL RBC transfusion. Similar results were obtained following HOD or KEL RBC transfusion into recipients genetically deficient in MZ B cells. In contrast, although MZ B cells were required for HOD and KEL RBC-alloantibody formation, manipulation of CD4 T cells differentially impacted the ability of each antigen to induce alloantibodies. While transfusion of HOD or KEL RBCs resulted in robust IgM alloantibodies in the absence of CD4 T cells, depletion or genetic elimination of CD4 T cells significantly inhibited anti-HOD IgG antibody formation, while failing to impact IgG anti-KEL antibody formation. Consistent with this, while manipulation of CD4 T cells protected HOD RBCs from antibody deposition and subsequent RBC clearance, this same approach failed to similarly protect KEL RBCs following transfusion. In contrast, depletion of MZ B cells not only prevented detectable alloantibody production, but also completely protected HOD or KEL RBCs from antibody deposition and subsequent RBC clearance.
Conclusion: These results suggest that while MZ B cells mediate a robust IgM antibody response following either KEL or HOD antigen exposure, MZ B cells appear to possess the capacity to orchestrate unique downstream IgG responses through CD4 T cell dependent and independent pathways contingent on target alloantigen. As a result, while manipulation of CD4 T cells may prevent alloantibody formation against some antigens, targeting this immune population inadequately prevents RBC alloantibody formation against all RBC antigens. As chronic transfusion therapy exposes recipients to a wide variety of alloantigens, these results suggest that MZ B cells may represent a central initiating node that governs RBC alloimmunization against a variety of RBC alloantigens, and may therefore serve as a useful target in preventing alloantibody formation in chronically transfused individuals.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal