Multiple myeloma (MM) bone disease (MMBD) is characterized by activation of osteoclasts and suppression of osteoblastic differentiation, with these changes in the bone microenvironment supporting MM cell growth and drug resistance. These complex interactions between MM cells and bone cells are incompletely understood. Current bone targeted therapy with bisphosphonates or Denosumab only blocks bone resorption but has no effect on osteoblast activity and only modest effects on MM growth. Therefore, new MMBD treatments are needed. Semaphorin-4D (Sema4D; CD100), is made by osteoclasts and inhibits osteoblasts by binding to the Plexin B receptor. Breast cancers also express Sema4d, and silencing sema4D in MDA-MB-231 breast cancer cells suppresses bone metastasis (Yang Y et al, PLoS One 2016). Since breast cancers and MM both cause osteolytic bone destruction and soluble Sema4D and Plexin B levels are increased in sera of MM patients (Terpos et al, 2012), we tested if sema4D contributed to MMBD. qPCR analysis of human MM cell lines and primary CD138+ cells showed MM cells express high levels of sema4D mRNA, comparing to the MDA-MB-231 breast cancer cells. Analysis of previously reported gene expression array data confirmed that MM cells express sema4D at a higher level compared to bone marrow plasma cells of MGUS and healthy donors (GenomicScape.com; Zhan F et al, Blood 2007; Mattiolo M et al, Oncogene, 2005). These results plus those of Terpos et al suggest that MM cells commonly express Sema4D.

We next asked if the bone microenvironment increases MM expression of Sema4D. We co-cultured human MM cell lines RPMI8226 and JJN3 with mouse bones. Species -specific changes in tumor and bone were evaluated by quantitative RT-PCR. MM cells engrafted onto mouse bones, increasing markers of osteolysis similar to those seen in MM bone disease.

After a week of co-culture, Sema4D expression was increased in MM cells (mean ±SD; 4.2±0.4; p=0.023), compared to MM cells grown alone. In addition, bones co-cultured with MM cells expressed higher Sema4D mRNA than bones alone (mean ±SD; 3.6±0.21; p=0.03). While co-culture increased both MM and bone Sema4D, markers of osteoblast activity, Col1a1, alkaline phosphatase and osteocalcin were suppressed. Preliminary experiments suggest that osteocytes are a major source of Sema4D expression in bone, in addition to active osteoclasts, which are much rarer cells than osteocytes. The induction of Sema4D in bone was only partially inhibited by 100nM zoledronic acid to inhibit osteoclast activity. Since osteocytes can physically interact with MM cells in vivo (Delgado Calle, Cancer Res 2016), we then tested the effect of MM cells on osteocyte sema4D expression in co-cultures of RPMI 8226 and JJN3 MM cells with MOL-Y4 osteocytic cells, separated by transwells. Both MM cell lines increased the Sema4D mRNA content of MLO-Y4 cells (mean ±SD; 3.1±0.4; p=0.036), suggesting that myeloma-secreted factors regulate osteocyte Sema4D expression.

Since Sema4D is a potent osteoblast inhibitor, our data suggest that osteocyte -derived Sema4D may be a major contributor to MMBD, and that neutralization of Sema4D activity should improve the suppressed bone formation in MM.

Disclosures

Roodman:Amgen: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution