We recently reported that FOXM1 is a promising therapeutic target in multiple myeloma (MM), particularly for the subset of patients with high-risk disease.Because high-risk myeloma exhibits a strong predilection to early drug-resistant relapse following first-line therapy, we here decided to evaluate the role of FOXM1 in the acquisition of drug resistance by myeloma cells.

We analyzed gene expression profiles of 88 paired myeloma samples at baseline and relapse from the UAMS Total Therapy 2 cohort and found that FOXM1 mRNA levels were significant upregulated in relapsed myeloma and that this was associated with poor event-free and overall survival. Laboratory studies showed that enforced expression of FOXM1 in human myeloma cell lines (HMCLs) results in decreased sensitivity of cells to widely used myeloma drugs, such as bortezomib and doxorubicin. This was observed in vitro, in both bulk cell and soft-agar culture, and in vivo using xenografting in mice. Biochemical analysis of HMCLs revealed physical interaction of FOXM1 with CDK6 and Rb, key regulators of cell cycle progression and cellular senescence, respectively.Treatment with small-compound CDK6 inhibitor, inhibited myeloma growth, decreased clonogenicity of myeloma, and ameliorated FOXM1-dependent senescence. Genetic and pharmacological targeting of FOXM1 in myeloma cells using shRNA and thiostreptone respectively, led to growth arrest and senescence, while elevated expression of FOXM1 reversed these phenotypes.

In sum, our findings implicating the FOXM1-CDK6-Rb network in drug resistance and senescence of high-risk myeloma point to new treatment opportunities for this difficult-to-cure neoplasm.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution