Our laboratory showed that mouse embryos lacking the classical transferrin receptor, Tfrc, experienced anemia, pericardial effusion and a kinking of the neural tube, but otherwise appeared to be developing normally, suggesting that Tfrc was not needed by most tissues (Levy et al. 1999). Subsequently, we reported that Tfrc was essential for hematopoiesis but seemed to be dispensable in other tissues (Ned et al., 2003). A recent paper showing that a missense mutation in the TFRC internalization motif resulted in immunodeficiency without other clinical manifestations was consistent with this idea (Jabara et al., 2016). Nonetheless, we were not entirely convinced. More than thirty years ago, Larrick and Hyman described a patient with an anti-TFRC autoantibody who suffered from a broader range of clinical problems, suggesting that TFRC might have other roles (Larrick and Hyman, 1984). To help resolve the issue, we developed mice carrying an allele of Tfrc that can be conditionally inactivated, and used Cre/lox-mediated recombination to disrupt that allele in vivo, in several key cell types. We asked two questions: (1) is Tfrc important in those cell types and, if so, (2) what are the cellular consequences of Tfrc loss? We found that some cell types do not need Tfrc but others are highly dependent upon it. Those cell types that depend upon Tfrc generally need it for iron uptake, as expected, with one exception. Tfrc is critically important for normal development of the intestinal epithelium, but our data indicate that its essential role does not involve iron uptake. While surprising in view of our earlier results, the roles of Tfrc that we have unmasked through conditional knockout experiments would not have been apparent prior to the death of global Tfrc knockout embryos in mid-gestation. Nonetheless those roles are important, and our results give insight into why iron deficiency exacerbates heart failure, how muscle iron deficiency leads to disruption of systemic carbon metabolism, and how iron deficiency, rather than iron excess, may play a role in the pathogenesis of neurodegenerative disorders.
Levy JE, Jin O, Fujiwara Y, Kuo F, Andrews NC. Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nat Genet. 1999;21:396-9.
Ned RM, Swat W, Andrews NC. Transferrin receptor 1 is differentially required in lymphocyte development. Blood. 2003;102:3711-8.
Jabara HH, Boyden SE, Chou J et al. A missense mutation in TFRC, encoding transferrin receptor 1, causes combined immunodeficiency. Nat Genet. 2016;48:74-8.
Larrick JW, Hyman ES. Acquired iron-deficiency anemia caused by an antibody against the transferrin receptor. N Engl J Med. 1984;311:214-8.
Andrews: Novartis: Membership on an entity's Board of Directors or advisory committees.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal