The FLT3 Internal Tandem Duplication (FLT3ITD) is common somatic mutation in acute myeloid leukemia (AML). We have previously shown that FLT3ITD fails to induce changes in HSC self-renewal, myelopoiesis and leukemogenesis during fetal stages of life. FLT3ITD signal transduction pathways are hyperactivated in fetal progenitors, but FLT3ITD target genes are not. This suggests that postnatal-specific transcription factors may be required to help induce FLT3ITD target gene expression. Alternatively, repressive histone modifications may impose a barrier to FLT3ITD target gene activation in fetal HPCs that is relaxed during postnatal development. To resolve these possibilities, we used ATAC-seq, as well as H3K4me1, H3K27ac and H3K27me3 ChIP-seq, to identify cis-elements that putatively control FLT3ITD target gene expression in fetal and adult hematopoietic progenitor cells (HPCs). We identified many enhancer elements (ATAC-seq peaks with H3K4me1 and H3K27ac) that exhibited increased chromatin accessibility and activity in FLT3ITD adult HPCs relative to wild type adult HPCs. These elements were enriched near FLT3ITD target genes. HOMER analysis showed enrichment for STAT5, ETS, RUNX1 and IRF binding motifs within the FLT3ITD target enhancers, but motifs for temporally dynamic transcription factors were not identified. We cloned a subset of the enhancers and confirmed that they could synergize with their promoter to activate a luciferase reporter. For representative enhancers, STAT5 binding sites were required to activate the enhancer - as anticipated - and RUNX1 repressed enhancer activity. We tested whether accessibility or priming changed between fetal and adult stages of HPC development. FLT3ITD-dependent changes in chromatin accessibility were not observed in fetal HPCs, though the enhancers were primed early in development as evidenced by the presence of H3K4me1. Repressive H3K27me3 were not present at FLT3ITD target enhancers in either or adult HPCs. The data show that FLT3ITD target enhancers are demarcated early in hematopoietic development, long before they become responsive to FLT3ITD signaling. Repressive marks do not appear to create an epigenetic barrier to enhancer activation in the fetal stage. Instead, age-specific transcription factors are likely required to pioneer enhancer elements so that they can respond to STAT5 and other FLT3ITD effectors.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal