Acute myeloid leukemia (AML) is associated with high relapse rates and poor survival, with limited response to conventional cancer therapy and lacking effective targeting of highly self-renewing leukemic stem cells (LSCs). The mechanism underlying the high self-renewal activity of LSCs that determines the aggressiveness of disease remains poorly understood. Although we and others have previously demonstrated the clinical significance of aberrant WNT/β-catenin signaling in AML (Science, 327:1650-1653, 2010; Cancer Cell, 18:606-618, 2010), its pharmacologically tractable components essential for the regulation of LSC self-renewal have not yet been determined.
Our studies discover, for the first time, a critical link between R-spondin (RSPO)-LGR4/HOXA9 and WNT/β-catenin pathways in AML LSCs. Microarray data analysis of 183 AML patient samples showed a significant positive correlation between expression of LGR4 and HOXA9 (r=0.546, P<0.0001). LGR4 exerted a cell-of-origin-specific function in promoting aberrant self-renewal and AML progression in vivo through cooperating with HOXA9, a poor prognostic predictor. We observed that LGR4 itself was not able to fully transform normal hematopoietic stem/progenitor cells (HSPCs), but instead cooperated with HOXA9 in HSPCs to accelerate disease onset producing a highly aggressive short latency AML in vivo. LGR4 and HOXA9 were epigenetically upregulated and their coexpression was an essential determinant of RSPO-LGR4 oncogenic activity. RSPO/WNT3 ligands could serve as stem cell growth factors to sustain myeloid differentiation block and to promote proliferation of CD34+ LSC-enriched subpopulations in primary AML patient specimens co-expressing LGR4 and HOXA9. Conversely, CRISPR/Cas9-mediated knockout of LGR4 not only suppressed RSPO/WNT3 signals and markedly decreased nuclear active β-catenin, but also reduced tumor burden in a patient-derived xenograft (PDX) mouse model of relapsed AML. Importantly, this study is the first to demonstrate that pharmacological inhibition of RSPO3-LGR4 signaling by a clinical-grade anti-RSPO3 monoclonal antibody induced LSC differentiation and consequently prevented tumor growth in AML PDX mice but did not affect normal human stem cell compartment in NSG mice.
Together, our findings support a critical role for RSPO-LGR4 in the Wnt/β-catenin signaling pathway to promote AML leukemogenesis. Aberrant activation of RSPO-LGR4 is crucial for enhancing the self-renewal potential and myeloid differentiation block, which contribute to an aggressive leukemia phenotype through cooperating with HOXA9. Genetic and pharmacological targeting of this pathway impairs LSC self-renewal and survival and impedes AML development in murine models and patient-derived xenografts, highlighting the therapeutic value of targeting RSPO-LGR4 signaling in AML.
References:
Wang Y, et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650-1653.
Yeung J, et al. Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010;18:606-618.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal