The mitochondria of hematopoietic stem cell (HSC) play crucial roles in regulating cell fate and in preserving HSC functionality and survival. However, the mechanism underlying its regulation remain poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulating mitochondrial function. We demonstrate that Twist1 deletion results in a significantly decreased long-term HSC (LT-HSC) frequency, markedly reduced dormancy and self-renewal capacities and skewed myeloid differentiation in steady-state hematopoiesis. Twist1-deficient LT-HSC are more compromised in tolerance of irradiation and 5 fluorouracil-induced stresses, and exhibit typical phenotypes of senescence and higher levels of DNA damage and apoptosis. Mechanistically, Twist1 deficiency upregulates the expression of voltage-gated calcium channel Cacna1b in HSC, leading to noticeable increases in mitochondrial calcium levels, biogenesis, metabolic activity and reactive oxygen species production. Suppression of voltage-gated calcium channel by a calcium channel blocker largely rescues the phenotypic and functional defects in Twist1-deleted HSCs under both steady-state and stress conditions. Collectively, our data, for the first time, characterize TWIST1 as a critical regulator of HSC function acting through CACNA1B/Ca2+/mitochondria axis, and highlight the importance of Ca2+ in HSC maintenance. These observations provide new insights into the mechanisms for the control of HSC fate.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal