Abstract
RNA guided CRISPR genome editing systems can make specific changes to the genomes of mammalian cells and have the potential to treat a range of diseases including those that can be addressed by editing hepatocytes. Attempts to edit the liver in vivo have relied almost exclusively on the Cas9 nucleases derived from the bacteria S treptococcus pyogenes or Staphylococcus aureus to which humans are commonly exposed. Pre-existing immunity to both these proteins has been reported in humans which raises concerns about their in vivo application. In silico analysis of a large metagenomics database followed by testing in mammalian cells in culture identified MG29-1, a novel CRISPR system which is a member of the Type V family but exhibits only 41 % amino acid identity to Francisella tularensis Cas12a/cpf1. MG29-1 is a 1280 amino acid RNA programmable nuclease that utilizes a single guide RNA comprised of a 22 nucleotide (nt) constant region and a 20 to 25 nt spacer, recognizes the PAM KTTN (predicted frequency 1 in 16 bp) and generates staggered cuts. MG29-1 was derived from a sample taken from a hydrothermal vent and it is therefore unlikely that humans will have developed pre-existing immunity to this protein. A screen for sgRNA targeting serum albumin in the mouse liver cell line Hepa1-6 identified 6 guides that generated more than 80% INDELS. The MG29-1 system was optimized for in vivo delivery by screening chemical modifications to the guide that improve stability in mammalian cell lysates while retaining or improving editing activity. Two lead guide chemistries were evaluated in mice using MG29-1 mRNA and sgRNA packaged in lipid nanoparticles (LNP). Three days after a single IV administration on-target editing was evaluated in the liver by Sanger sequencing. The sgRNA that was the most stable in the in vitro assay generated INDELS that ranged from 20 to 25% while a sgRNA with lower in vitro stability failed to generate detectable INDELs. The short sgRNA and small protein size compared to spCas9 makes MG29-1 an attractive alternative to spCas9 for in vivo editing applications. Evaluation of the potential of MG29-1 to perform gene knockouts and gene additions via non-homologous end joining is ongoing.
No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal