Background:

Natural killer (NK) cells exhibit anti-tumor activity in a non-antigen-specific manner without causing graft-versus-host disease. T cell and cord blood NK cells expressing chimeric antigen receptor (CAR) targeting CD19 have demonstrated remarkable clinical efficacies against B cell lymphomas (Maude et al, N Engl J Med 2018; Neelapu et al, N Engl J Med 2017; Liu et al, N Engl J Med 2020). Celularity has developed a platform for the expansion and differentiation of human placental CD34 + stem cells towards NK cells. The introduction of CD19 CAR enables generation of CAR19-CYNK cells that can be used as an off-the-shelf, cryopreserved, allogeneic cell therapy for CD19 + B cell malignancies. Reported here are the in vitro and in vivo results evaluating anti-tumor activity of CAR19-CYNK against CD19 + B cell malignancies.

Methods:

CAR19-CYNK cells were generated by retroviral transduction of human placental CD34 + cells with an anti-CD19 CAR (CD19scFv-CD28CD3ζ, Sorrento Therapeutics), followed by culture expansion in the presence of cytokines. CD19 CAR expression and phenotype of CAR19-CYNK cells were characterized by flow cytometry using the following surface markers: CD56, CD3, CD226, CD16, CD11a, CD94, NKG2D, NKp30, NKp44, NKp46. The in vitro anti-tumor activity of CAR19-CYNK against the B cell lymphoma cell lines, Daudi and Nalm-6, was assessed at various effector to target (E:T) ratios using a flow cytometry-based cytotoxicity assay and multiplex Luminex analysis for cytokine profiling. Non-transduced (NT) NK cells were used as control. In vivo efficacy of CAR19-CYNK was assessed using a disseminated B-cell lymphoma xenograft model in B-NDG-hIL15 mice. B-NDG-hIL15 mice lack T, B, and NK cells and are transgenic for human IL-15 to support CAR19-CYNK persistence and maturation. Luciferase expressing Daudi cells (3×10 6) were intravenously (IV) injected on Day 0 three days after the mice were preconditioned with a myeloablative dose of busulfan to allow for better tumor cell engraftment. CAR19-CYNK cells (1x10 7) were IV injected on Day 7. Tumor burden was assessed weekly by bioluminescence imaging (BLI) and the mice were followed for assessment of their survival (n=5 mice per group).

Results:

Placental CD34 + cells were genetically modified using a retroviral vector and achieved an average of 29.2% ± 12.4% (range 17.5% to 50.1%; n=5 donor lots) CD19 CAR expression on CAR19-CYNK cells at the end of 35-day culture. The average fold expansion of CAR19-CYNK was 6186 ± 2847 with the range of 2692 to 10626 (n=5 donor lots). Post-thaw evaluation of CAR19-CYNK (n=5 donor lots) revealed 93.8 ± 3.9% of CD56 +CD3 - NK cells, and transduction of CD19 CAR on CYNK did not significantly alter NK cell phenotype based on various activation and lineage markers (CD226, CD16, CD11a, CD94, NKG2D, NKp30, NKp44, NKp46). CAR19-CYNK displayed enhanced in vitro cytotoxicity against lymphoma cell lines, Daudi and Nalm-6, compared to that of NT NK cells. At the E:T ratio of 10:1, CAR19-CYNK (n=5 donor lots) elicited significant increased cytotoxicity against Nalm-6 compared to that of NT NK cells, with 75.9 ± 14.8% vs. 0.00 ± 0.00% at 24h (p<0.005). Under the same condition, CAR19-CYNK (n=4 donor lots) showed higher cytotoxicity against Daudi compared to that of NT NK cells with 23.6 ± 18.9% vs. 4.9 ± 4.0%. When cocultured with tumor cell lines, CAR19-CYNK showed increased secretion of the proinflammatory cytokines GM-CSF (p<0.05 for both Nalm-6 and Daudi), IFN-g (p<0.05 for Nalm-6), and TNF-a compared to that of NT NK cells at an E:T ratio of 1:1 for 24h. To evaluate the in vivo efficacy of CAR19-CYNK, a disseminated Daudi xenograft B-NDG-hIL15 model was used. CAR19-CYNK treated mice demonstrated a significant survival benefit with a median survival of 39 days versus a median survival of 28 days for the vehicle treated group (p<0.05).

Conclusions:

In summary, we have successfully established a process for generating CAR19-CYNK cells from human placental CD34 + cells. CAR19-CYNK demonstrated enhanced in vitro cytotoxicity against CD19 + B cell malignancies and in vivo survival benefit in a disseminated lymphoma xenograft B-NDG-hIL15 model. Further development of CAR19-CYNK for CD19 + B cell malignancies is warranted.

Disclosures

Gergues:Celularity Inc: Current Employment, Current equity holder in publicly-traded company. Raitman:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Gleason:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Rousseva:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. He:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Van Der Touw:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Ye:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Kang:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Zhang:Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Pai:Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Guo:Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Ji:Sorrento Therapeutics Inc.: Current Employment, Current equity holder in publicly-traded company. Hariri:Celularity Inc.: Current Employment, Current equity holder in publicly-traded company. Zhang:Celularity Inc.: Current equity holder in publicly-traded company, Ended employment in the past 24 months.

Sign in via your Institution