• Both N-motif–negative and –positive tumor cells can be selected and expanded during tumor evolution.

  • N-motif–negative tumor cells upregulate metabolic pathways, which may underlie their ability to thrive despite presumably less BCR signaling.

Abstract

An early event in the genesis of follicular lymphoma (FL) is the acquisition of new glycosylation motifs in the B-cell receptor (BCR) due to gene rearrangement and/or somatic hypermutation. These N-linked glycosylation motifs (N-motifs) contain mannose-terminated glycans and can interact with lectins in the tumor microenvironment, activating the tumor BCR pathway. N-motifs are stable during FL evolution, suggesting that FL tumor cells are dependent on them for their survival. Here, we investigated the dynamics and potential impact of N-motif prevalence in FL at the single-cell level across distinct tumor sites and over time in 17 patients. Although most patients had acquired at least 1 N-motif as an early event, we also found (1) cases without N-motifs in the heavy or light chains at any tumor site or time point and (2) cases with discordant N-motif patterns across different tumor sites. Inferring phylogenetic trees of the patients with discordant patterns, we observed that both N-motif–positive and N-motif–negative tumor subclones could be selected and expanded during tumor evolution. Comparing N-motif–positive with N-motif–negative tumor cells within a patient revealed higher expression of genes involved in the BCR pathway and inflammatory response, whereas tumor cells without N-motifs had higher activity of pathways involved in energy metabolism. In conclusion, although acquired N-motifs likely support FL pathogenesis through antigen-independent BCR signaling in most patients with FL, N-motif–negative tumor cells can also be selected and expanded and may depend more heavily on altered metabolism for competitive survival.

1.
Swerdlow
SH
,
Campo
E
,
Pileri
SA
, et al
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood
.
2016
;
127
(
20
):
2375
-
2390
.
2.
Tsujimoto
Y
,
Cossman
J
,
Jaffe
E
,
Croce
CM
.
Involvement of the BCL-2 gene in human follicular lymphoma
.
Science
.
1985
;
228
(
4706
):
1440
-
1443
.
3.
Stamatopoulos
K
,
Kosmas
C
,
Papadaki
T
, et al
.
Follicular lymphoma immunoglobulin kappa light chains are affected by the antigen selection process, but to a lesser degree than their partner heavy chains
.
Br J Haematol
.
1997
;
96
(
1
):
132
-
146
.
4.
Zhu
D
,
McCarthy
H
,
Ottensmeier
CH
,
Johnson
P
,
Hamblin
TJ
,
Stevenson
FK
.
Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma
.
Blood
.
2002
;
99
(
7
):
2562
-
2568
.
5.
McCann
KJ
,
Johnson
PW
,
Stevenson
FK
,
Ottensmeier
CH
.
Universal N-glycosylation sites introduced into the B-cell receptor of follicular lymphoma by somatic mutation: a second tumorigenic event?
.
Leukemia
.
2006
;
20
(
3
):
530
-
534
.
6.
Zabalegui
N
,
de Cerio
ALD
,
Inoges
S
, et al
.
Acquired potential N-glycosylation sites within the tumor-specific immunoglobulin heavy chains of B-cell malignancies
.
Haematologica
.
2004
;
89
(
5
):
541
-
546
.
7.
Koning
MT
,
Quinten
E
,
Zoutman
WH
, et al
.
Acquired N-linked glycosylation motifs in B-cell receptors of primary cutaneous B-cell lymphoma and the normal B-cell repertoire
.
J Invest Dermatol
.
2019
;
139
(
10
):
2195
-
2203
.
8.
Küppers
R
,
Stevenson
FK
.
Critical influences on the pathogenesis of follicular lymphoma
.
Blood
.
2018
;
131
(
21
):
2297
-
2306
.
9.
Radcliffe
CM
,
Arnold
JN
,
Suter
DM
, et al
.
Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor
.
J Biol Chem
.
2007
;
282
(
10
):
7405
-
7415
.
10.
Hollander
N
,
Haimovich
J
.
Altered N-linked glycosylation in follicular lymphoma and chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic targeting
.
Front Immunol
.
2017
;
8
:
912
.
11.
Vletter
EM
,
Koning
MT
,
Scherer
HU
,
Veelken
H
,
Toes
REM
.
A comparison of immunoglobulin variable region N-linked glycosylation in healthy donors, autoimmune disease and lymphoma
.
Front Immunol
.
2020
;
11
:
241
.
12.
Coelho
V
,
Krysov
S
,
Ghaemmaghami
AM
, et al
.
Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
43
):
18587
-
18592
.
13.
Linley
A
,
Krysov
S
,
Ponzoni
M
,
Johnson
PW
,
Packham
G
,
Stevenson
FK
.
Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells
.
Blood
.
2015
;
126
(
16
):
1902
-
1910
.
14.
Amin
R
,
Mourcin
F
,
Uhel
F
, et al
.
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma
.
Blood
.
2015
;
126
(
16
):
1911
-
1920
.
15.
Mamessier
E
,
Drevet
C
,
Broussais-Guillaumot
F
, et al
.
Contiguous follicular lymphoma and follicular lymphoma in situ harboring N-glycosylated sites
.
Haematologica
.
2015
;
100
(
4
):
e155
-
157
.
16.
Odabashian
M
,
Carlotti
E
,
Araf
S
, et al
.
IGHV sequencing reveals acquired N-glycosylation sites as a clonal and stable event during follicular lymphoma evolution
.
Blood
.
2020
;
135
(
11
):
834
-
844
.
17.
Van Bergen
CAM
,
Kloet
SL
,
Quinten
E
, et al
.
Acquisition of a glycosylated B-cell receptor drives follicular lymphoma towards a dark zone phenotype
.
Blood Adv
.
2023
;
7
(
19
):
5812
-
5816
.
18.
Haebe
S
,
Shree
T
,
Sathe
A
, et al
.
Single-cell analysis can define distinct evolution of tumor sites in follicular lymphoma
.
Blood
.
2021
;
137
(
21
):
2869
-
2880
.
19.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
20.
Villani
AC
,
Satija
R
,
Reynolds
G
, et al
.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
.
Science
.
2017
;
356
(
6335
):
eaah4573
.
21.
Crinier
A
,
Milpied
P
,
Escalière
B
, et al
.
High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice
.
Immunity
.
2018
;
49
(
5
):
971
-
986.e5
.
22.
Andor
N
,
Simonds
EF
,
Czerwinski
DK
, et al
.
Single-cell RNA-seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints
.
Blood
.
2019
;
133
(
10
):
1119
-
1129
.
23.
Rand
WM
.
Objective criteria for the evaluation of clustering methods
.
J Am Stat Assoc
.
1971
;
66
(
336
):
846
-
850
.
24.
Gupta
NT
,
Vander Heiden
JA
,
Uduman
M
,
Gadala-Maria
D
,
Yaari
G
,
Kleinstein
SH
.
Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data
.
Bioinformatics
.
2015
;
31
(
20
):
3356
-
3358
.
25.
Stern
JN
,
Yaari
G
,
Vander Heiden
JA
, et al
.
B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes
.
Sci Transl Med
.
2014
;
6
(
248
):
248ra107
.
26.
Csardi
G
,
Nepusz
T
.
The igraph software package for complex network research
.
Int J Complex Syst
.
2006
;
1695
(
5
):
1
-
9
.
27.
Pascual
V
,
Victor
K
,
Lelsz
D
, et al
.
Nucleotide sequence analysis of the V regions of two IgM cold agglutinins. Evidence that the VH4-21 gene segment is responsible for the major cross-reactive idiotype
.
J Immunol
.
1991
;
146
(
12
):
4385
-
4391
.
28.
Bhat
NM
,
Bieber
MM
,
Spellerberg
MB
,
Stevenson
FK
,
Teng
NN
.
Recognition of auto- and exoantigens by V4-34 gene encoded antibodies
.
Scand J Immunol
.
2000
;
51
(
2
):
134
-
140
.
29.
Schickel
JN
,
Glauzy
S
,
Ng
YS
, et al
.
Self-reactive VH4-34-expressing IgG B cells recognize commensal bacteria
.
J Exp Med
.
2017
;
214
(
7
):
1991
-
2003
.
30.
Leich
E
,
Maier
C
,
Bomben
R
, et al
.
Follicular lymphoma subgroups with and without t(14;18) differ in their N-glycosylation pattern and IGHV usage
.
Blood Adv
.
2021
;
5
(
23
):
4890
-
4900
.
31.
Grimes
SM
,
Kim
HS
,
Roy
S
, et al
.
Single-cell multi-gene identification of somatic mutations and gene rearrangements in cancer
.
NAR Cancer
.
2023
;
5
(
3
):
zcad034
.
32.
Radtke
AJ
,
Postovalova
E
,
Varlamova
A
, et al
.
A multi-scale, multiomic atlas of human normal and follicular lymphoma lymph nodes. bioRxiv
. Preprint posted online 5 June 2022. https://www.biorxiv.org/content/10.1101/2022.06.03.494716v1.
33.
Huet
S
,
Salles
G
.
Potential of circulating tumor DNA for the management of patients with lymphoma
.
JCO Oncol Pract
.
2020
;
16
(
9
):
561
-
568
.
You do not currently have access to this content.
Sign in via your Institution