Abstract

Pyruvate kinase (PK) is a key enzyme in glycolysis, the sole source of adenosine triphosphate, which is essential for all energy-dependent activities of red blood cells. Activating PK shows great potential for treating a broad range of hemolytic anemias beyond PK deficiency, because they also enhance activity of wild-type PK. Motivated by observations of sickle-cell complications in sickle-trait individuals with concomitant PK deficiency, activating endogenous PK offers a novel and promising approach for treating patients with sickle-cell disease.

1.
Betz
T
,
Lenz
M
,
Joanny
JF
,
Sykes
C
.
ATP-dependent mechanics of red blood cells
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
36
):
15320
-
15325
.
2.
McMahon
TJ
,
Darrow
CC
,
Hoehn
BA
,
Zhu
H
.
Generation and export of red blood cell ATP in health and disease
.
Front Physiol
.
2021
;
12
:
754638
.
3.
Brown
KA
.
Erythrocytes metabolism and enzyme defects
.
Lab Med
.
1996
;
27
(
5
):
329
-
333
.
4.
Poillon
WN
,
Kim
BC
.
2,3-diphosphoglycerate and intracellular pH as interdependent determinants of the physiologic solubility of deoxyhemoglobin S
.
Blood
.
1990
;
76
(
5
):
1028
-
1036
.
5.
Poillon
WN
,
Kim
BC
,
Labotka
RJ
,
Hicks
CU
,
Kark
JA
.
Antisickling effects of 2,3-diphosphoglycerate depletion
.
Blood
.
1995
;
85
(
11
):
3289
-
3296
.
6.
Eaton
WA
,
Bunn
HF
.
Treating sickle cell disease by targeting HbS polymerization
.
Blood
.
2017
;
129
(
20
):
2719
-
2726
.
7.
Grace
RF
,
Bianchi
P
,
van Beers
EJ
, et al
.
Clinical spectrum of pyruvate kinase deficiency: data from the Pyruvate Kinase Deficiency Natural History Study
.
Blood
.
2018
;
131
(
20
):
2183
-
2192
.
8.
Zanella
A
,
Fermo
E
,
Bianchi
P
,
Valentini
G
.
Red cell pyruvate kinase deficiency: molecular and clinical aspects
.
Br J Haematol
.
2005
;
130
(
1
):
11
-
25
.
9.
Vander Heiden
MG
.
Targeting cancer metabolism: a therapeutic window opens
.
Nat Rev Drug Discov
.
2011
;
10
(
9
):
671
-
684
.
10.
Zahra
K
,
Dey
T
,
Ashish
,
Mishra
SP
,
Pandey
U
.
Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis
.
Front Oncol
.
2020
;
10
:
159
.
11.
Kung
C
,
Hixon
J
,
Kosinski
PA
, et al
.
AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency
.
Blood
.
2017
;
130
(
11
):
1347
-
1356
.
12.
Al-Samkari
H
,
Galacteros
F
,
Glenthoj
A
, et al
.
Mitapivat versus placebo for pyruvate kinase deficiency
.
N Engl J Med
.
2022
;
386
(
15
):
1432
-
1442
.
13.
Glenthoj
A
,
van Beers
EJ
,
Al-Samkari
H
, et al
.
Mitapivat in adult patients with pyruvate kinase deficiency receiving regular transfusions (ACTIVATE-T): a multicentre, open-label, single-arm, phase 3 trial
.
Lancet Haematol
.
2022
;
9
(
10
):
e724
-
e732
.
14.
Yang
H
,
Merica
E
,
Chen
Y
, et al
.
Phase 1 single- and multiple-ascending-dose randomized studies of the safety, pharmacokinetics, and pharmacodynamics of AG-348, a first-in-class allosteric activator of pyruvate kinase R, in healthy volunteers
.
Clin Pharmacol Drug Dev
.
2019
;
8
(
2
):
246
-
259
.
15.
Matte
A
,
Federti
E
,
Kung
C
, et al
.
The pyruvate kinase activator mitapivat reduces hemolysis and improves anemia in a beta-thalassemia mouse model
.
J Clin Invest
.
2021
;
131
(
10
):
e144206
.
16.
Kuo
KHM
,
Layton
DM
,
Lal
A
, et al
.
Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent alpha-thalassaemia or beta-thalassaemia: an open-label, multicentre, phase 2 study
.
Lancet
.
2022
;
400
(
10351
):
493
-
501
.
17.
Gladwin
MT KG
,
Novelli
EM
. Sickle Cell Disease.
McGraw Hill/Medical
;
2021
.
18.
Charache
S
,
Grisolia
S
,
Fiedler
AJ
,
Hellegers
AE
.
Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia
.
J Clin Invest
.
1970
;
49
(
4
):
806
-
812
.
19.
Cohen-Solal
M
,
Prehu
C
,
Wajcman
H
, et al
.
A new sickle cell disease phenotype associating Hb S trait, severe pyruvate kinase deficiency (PK Conakry), and an alpha2 globin gene variant (Hb Conakry)
.
Br J Haematol
.
1998
;
103
(
4
):
950
-
956
.
20.
Alli
N
,
Coetzee
M
,
Louw
V
, et al
.
Sickle cell disease in a carrier with pyruvate kinase deficiency
.
Hematology
.
2008
;
13
(
6
):
369
-
372
.
21.
Xu
JZ
,
Thein
SL
.
The carrier state for sickle cell disease is not completely harmless
.
Haematologica
.
2019
;
104
(
6
):
1106
-
1111
.
22.
Wang
X
,
Gardner
K
,
Tegegn
MB
, et al
.
Genetic variants of PKLR are associated with acute pain in sickle cell disease
.
Blood Adv
.
2022
;
6
(
11
):
3535
-
3540
.
23.
Wang
X
,
Fu
YP
,
Li
Q
, et al
.
Pklr variants associated with acute pain in sickle cell disease influence ATP concentrations in red blood cells
.
Blood
.
2022
;
140
:
954
-
956
.
24.
Rab
MAE
,
Bos
J
,
van Oirschot
BA
, et al
.
Decreased activity and stability of pyruvate kinase in sickle cell disease: a novel target for mitapivat therapy
.
Blood
.
2021
;
137
(
21
):
2997
-
3001
.
25.
Shrestha
A
,
Chi
M
,
Wagner
K
, et al
.
FT-4202, an oral PKR activator, has potent antisickling effects and improves RBC survival and Hb levels in SCA mice
.
Blood Adv
.
2021
;
5
(
9
):
2385
-
2390
.
26.
Quezado
ZMN
,
Kamimura
S
,
Smith
M
, et al
.
Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model
.
Blood Cells Mol Dis
.
2022
;
95
:
102660
.
27.
Xu
JZ
,
Conrey
A
,
Frey
I
, et al
.
A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease
.
Blood
.
2022
;
140
(
19
):
2053
-
2062
.
28.
van Dijk
MJ
,
Rab
MAE
,
van Oirschot
BA
, et al
.
Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in sickle cell disease: a phase 2, open-label study
.
Am J Hematol
.
2022
;
97
(
7
):
E226
-
E229
.
29.
Brown
RC
,
K; Kalfa
TA
,
Kuypers
FA
, et al
.
FT-4202, an allosteric activator of pyruvate kinase-R, demonstrates proof of mechanism and proof of concept after a single dose and after multiple daily doses in a phase 1 study of patients with sickle cell disease
.
Blood
.
2020
;
136
:
19
-
20
.
30.
Schroeder
P
,
Fulzele
K
,
Forsyth
S
, et al
.
Etavopivat, a pyruvate kinase activator in red blood cells, for the treatment of sickle cell disease
.
J Pharmacol Exp Ther
.
2022
;
380
(
3
):
210
-
219
.
31.
Forsyth
S
,
Schroeder
P
,
Geib
J
, et al
.
Safety, pharmacokinetics, and pharmacodynamics of etavopivat (FT-4202), an allosteric activator of pyruvate kinase-R, in healthy adults: a randomized, placebo-controlled, double-blind, first-in-human phase 1 trial
.
Clin Pharmacol Drug Dev
.
2022
;
11
(
5
):
654
-
665
.
32.
Bunn
HF
.
Oxygen delivery in the treatment of anemia
.
N Engl J Med
.
2022
;
387
(
25
):
2362
-
2365
.
33.
Sunshine
HR
,
Hofrichter
J
,
Ferrone
FA
,
Eaton
WA
.
Oxygen binding by sickle cell hemoglobin polymers
.
J Mol Biol
.
1982
;
158
(
2
):
251
-
273
.
34.
Henry
ER
,
Harper
J
,
Glass
KE
,
Metaferia
B
,
Louis
JM
,
Eaton
WA
.
MWC allosteric model explains unusual hemoglobin-oxygen binding curves from sickle cell drug binding
.
Biophys J
.
2021
;
120
(
12
):
2543
-
2551
.
35.
Henry
ER
,
Metaferia
B
,
Li
Q
, et al
.
Treatment of sickle cell disease by increasing oxygen affinity of hemoglobin
.
Blood
.
2021
;
138
(
13
):
1172
-
1181
.
36.
Howard
J
,
Ataga
KI
,
Brown
RC
, et al
.
Voxelotor in adolescents and adults with sickle cell disease (HOPE): long-term follow-up results of an international, randomised, double-blind, placebo-controlled, phase 3 trial
.
Lancet Haematol
.
2021
;
8
(
5
):
e323
-
e333
.
37.
Inusa
BPD
,
Casale
M
,
Campbell
A
,
Archer
N
.
Will the changing therapeutic landscape meet the needs of patients with sickle cell disease?
.
Lancet Haematol
.
2021
;
8
(
5
):
e306
-
e307
.
38.
Konté
K
,
Baas
KPA
,
Afzali-Hashemi
L
, et al
.
Effect of voxelotor on cerebral perfusion and cerebral oxygen metabolism in adult patients with sickle cell disease; preliminary results of the Coverage Study
.
Blood
.
2022
;
140
:
2535
-
2536
.
39.
Duhm
J
.
Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes
.
Pflügers Arch
.
1971
;
326
(
4
):
341
-
356
.
40.
Hofrichter
J
,
Ross
PD
,
Eaton
WA
.
Supersaturation in sickle cell hemoglobin solutions
.
Proc Natl Acad Sci U S A
.
1976
;
73
(
9
):
3035
-
3039
.
41.
Goldberg
MA
,
Husson
MA
,
Bunn
HF
.
Participation of hemoglobins A and F in polymerization of sickle hemoglobin
.
J Biol Chem
.
1977
;
252
(
10
):
3414
-
3421
.
42.
Briehl
RW
.
Gelation of sickle cell hemoglobin. IV. Phase transitions in hemoglobin S gels: separate measures of aggregation and solution--gel equilibrium
.
J Mol Biol
.
1978
;
123
(
4
):
521
-
538
.
43.
Henry
ER
,
Mozzarelli
A
,
Viappiani
C
, et al
.
Experiments on hemoglobin in single crystals and silica gels distinguish among allosteric models
.
Biophys J
.
2015
;
109
(
6
):
1264
-
1272
.
44.
Bunn
HF
.
Pathogenesis and treatment of sickle cell disease
.
N Engl J Med
.
1997
;
337
(
11
):
762
-
769
.
45.
Eaton
WA
,
Hofrichter
J
.
Hemoglobin S gelation and sickle cell disease
.
Blood
.
1987
;
70
(
5
):
1245
-
1266
.
46.
Li
Q
,
Henry
ER
,
Hofrichter
J
, et al
.
Kinetic assay shows that increasing red cell volume could be a treatment for sickle cell disease
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
5
):
E689
-
E696
.
47.
Park
Y
,
Best
CA
,
Auth
T
, et al
.
Metabolic remodeling of the human red blood cell membrane
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
4
):
1289
-
1294
.
48.
Jensen
M
,
Shohet
SB
,
Nathan
DG
.
The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro
.
Blood
.
1973
;
42
(
6
):
835
-
842
.
49.
El Nemer
W
,
Godard
A
,
El Hoss
S
.
Ineffective erythropoiesis in sickle cell disease: new insights and future implications
.
Curr Opin Hematol
.
2021
;
28
(
3
):
171
-
176
.
50.
Bennett
V
,
Stenbuck
PJ
.
The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes
.
Nature
.
1979
;
280
(
5722
):
468
-
473
.
51.
Ferru
E
,
Giger
K
,
Pantaleo
A
, et al
.
Regulation of membrane-cytoskeletal interactions by tyrosine phosphorylation of erythrocyte band 3
.
Blood
.
2011
;
117
(
22
):
5998
-
6006
.
52.
Mohandas
N
,
Gallagher
PG
.
Red cell membrane: past, present, and future
.
Blood
.
2008
;
112
(
10
):
3939
-
3948
.
53.
Lux
SEt
.
Anatomy of the red cell membrane skeleton: unanswered questions
.
Blood
.
2016
;
127
(
2
):
187
-
199
.
54.
Noomuna
P
,
Risinger
M
,
Zhou
S
, et al
.
Inhibition of Band 3 tyrosine phosphorylation: a new mechanism for treatment of sickle cell disease
.
Br J Haematol
.
2020
;
190
(
4
):
599
-
609
.
55.
Terra
HT
,
Saad
MJ
,
Carvalho
CR
,
Vicentin
DL
,
Costa
FF
,
Saad
ST
.
Increased tyrosine phosphorylation of band 3 in hemoglobinopathies
.
Am J Hematol
.
1998
;
58
(
3
):
224
-
230
.
56.
Le
K
,
Wang
X
,
Lundt
M
, et al
.
Activating pyruvate kinase improves red blood cell integrity by reducing Band3 tyrosine phosphorylation
.
Blood
.
2022
;
140
:
5395
-
5396
.
57.
Lundt
M
,
Asomaning
N
,
Frey
I
, et al
.
The pyruvate kinase activator mitapivat improves red blood cell deformability and sickling kinetics in adult patients with sickle cell disease
.
Blood
.
2022
;
140
:
2508
-
2509
.
58.
Little
JA
.
RBC, heal thyself: PK activators in SCD
.
Blood
.
2022
;
140
(
19
):
2005
-
2006
.
59.
Grace
RF
,
Rose
C
,
Layton
DM
, et al
.
Safety and efficacy of mitapivat in pyruvate kinase deficiency
.
N Engl J Med
.
2019
;
381
(
10
):
933
-
944
.
60.
Collaborators GBDSCD
.
Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021
.
Lancet Haematol
.
2023
;
10
(
8
):
e585
-
e599
.
61.
Migotsky
M
,
Beestrum
M
,
Badawy
SM
.
Recent advances in sickle-cell disease therapies: a review of voxelotor, crizanlizumab, and L-glutamine
.
Pharmacy (Basel)
.
2022
;
10
(
5
):
10050123
.
62.
Salinas Cisneros
G
,
Thein
SL
.
Recent advances in the treatment of sickle cell disease
.
Front Physiol
.
2020
;
11
:
435
.
63.
Telen
MJ
.
Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease
.
Blood
.
2016
;
127
(
7
):
810
-
819
.
64.
Thornburg
CD
,
Calatroni
A
,
Telen
M
,
Kemper
AR
.
Adherence to hydroxyurea therapy in children with sickle cell anemia
.
J Pediatr
.
2010
;
156
(
3
):
415
-
419
.
65.
Cronin
RM
,
Lin
CJ
,
Chiang
C
,
MacEwan
SR
,
DeBaun
MR
,
Hyer
JM
.
The use of FDA-approved medications for preventing vaso-occlusive events in sickle cell disease
.
Blood Adv
.
2023
;
7
(
13
):
3114
-
3116
.
66.
Tisdale
JF
,
Thein
SL
,
Eaton
WA
.
Treating sickle cell anemia
.
Science
.
2020
;
367
(
6483
):
1198
-
1199
.
67.
Menzel
S
,
Garner
C
,
Gut
I
, et al
.
A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15
.
Nat Genet
.
2007
;
39
(
10
):
1197
-
1199
.
68.
Tanhehco
YC
,
Nathu
G
,
Vasovic
LV
.
Development of curative therapies for sickle cell disease
.
Front Med (Lausanne)
.
2022
;
9
:
1055540
.
69.
Metaferia
B
,
Cellmer
T
,
Dunkelberger
EB
, et al
.
Phenotypic screening of the ReFRAME drug repurposing library to discover new drugs for treating sickle cell disease
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
40
):
e2210779119
.
You do not currently have access to this content.
Sign in via your Institution