• Hematological malignancies express high levels of CLEC2D, the inhibitory ligand for CD161.

  • Fully human CD161 mAbs enhance T-cell– and natural killer cell–mediated immunity.

Abstract

The CD161 inhibitory receptor is highly upregulated by tumor-infiltrating T cells in multiple human solid tumor types, and its ligand, CLEC2D, is expressed by both tumor cells and infiltrating myeloid cells. Here, we assessed the role of the CD161 receptor in hematological malignancies. Systematic analysis of CLEC2D expression using the Cancer Cell Line Encyclopedia revealed that CLEC2D messenger RNA was most abundant in hematological malignancies, including B-cell and T-cell lymphomas as well as lymphocytic and myelogenous leukemias. CLEC2D protein was detected by flow cytometry on a panel of cell lines representing a diverse set of hematological malignancies. We, therefore, used yeast display to generate a panel of high-affinity, fully human CD161 monoclonal antibodies (mAbs) that blocked CLEC2D binding. These mAbs were specific for CD161 and had a similar affinity for human and nonhuman primate CD161, a property relevant for clinical translation. A high-affinity CD161 mAb enhanced key aspects of T-cell function, including cytotoxicity, cytokine production, and proliferation, against B-cell lines originating from patients with acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and Burkitt lymphoma. In humanized mouse models, this CD161 mAb enhanced T-cell–mediated immunity, resulting in a significant survival benefit. Single cell RNA-seq data demonstrated that CD161 mAb treatment enhanced expression of cytotoxicity genes by CD4 T cells as well as a tissue-residency program by CD4 and CD8 T cells that is associated with favorable survival outcomes in multiple human cancer types. These fully human mAbs, thus, represent potential immunotherapy agents for hematological malignancies.

1.
Ansell
SM
,
Minnema
MC
,
Johnson
P
, et al
.
Nivolumab for relapsed/refractory diffuse large b-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study
.
J Clin Oncol
.
2019
;
37
(
6
):
481
-
489
.
2.
Chen
BJ
,
Chapuy
B
,
Ouyang
J
, et al
.
PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies
.
Clin Cancer Res
.
2013
;
19
(
13
):
3462
-
3473
.
3.
Chen
BJ
,
Dashnamoorthy
R
,
Galera
P
, et al
.
The immune checkpoint molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell lymphoma
.
Oncotarget
.
2019
;
10
(
21
):
2030
-
2040
.
4.
Aldemir
H
,
Prod'homme
V
,
Dumaurier
MJ
, et al
.
Cutting edge: lectin-like transcript 1 is a ligand for the CD161 receptor
.
J Immunol
.
2005
;
175
(
12
):
7791
-
7795
.
5.
Rosen
DB
,
Bettadapura
J
,
Alsharifi
M
,
Mathew
PA
,
Warren
HS
,
Lanier
LL
.
Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor
.
J Immunol
.
2005
;
175
(
12
):
7796
-
7799
.
6.
Blaha
J
,
Skalova
T
,
Kalouskova
B
, et al
.
Structure of the human NK cell NKR-P1:LLT1 receptor:ligand complex reveals clustering in the immune synapse
.
Nat Commun
.
2022
;
13
(
1
):
5022
.
7.
Kita
S
,
Matsubara
H
,
Kasai
Y
, et al
.
Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A
.
Eur J Immunol
.
2015
;
45
(
6
):
1605
-
1613
.
8.
Roth
P
,
Mittelbronn
M
,
Wick
W
,
Meyermann
R
,
Tatagiba
M
,
Weller
M
.
Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1
.
Cancer Res
.
2007
;
67
(
8
):
3540
-
3544
.
9.
Mathewson
ND
,
Ashenberg
O
,
Tirosh
I
, et al
.
Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis
.
Cell
.
2021
;
184
(
5
):
1281
-
1298.e26
.
10.
Sun
Y
,
Wu
L
,
Zhong
Y
, et al
.
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma
.
Cell
.
2021
;
184
(
2
):
404
-
421.e16
.
11.
Good
CR
,
Aznar
MA
,
Kuramitsu
S
, et al
.
An NK-like CAR T cell transition in CAR T cell dysfunction
.
Cell
.
2021
;
184
(
25
):
6081
-
6100.e26
.
12.
Badrinath
S
,
Dellacherie
MO
,
Li
A
, et al
.
A vaccine targeting resistant tumors by dual T cell plus NK cell attack
.
Nature
.
2022
;
606
(
7916
):
992
-
998
.
13.
Rosen
DB
,
Cao
W
,
Avery
DT
, et al
.
Functional consequences of interactions between human NKR-P1A and its ligand LLT1 expressed on activated dendritic cells and B cells
.
J Immunol
.
2008
;
180
(
10
):
6508
-
6517
.
14.
Reid
GS
,
She
K
,
Terrett
L
,
Food
MR
,
Trudeau
JD
,
Schultz
KR
.
CpG stimulation of precursor B-lineage acute lymphoblastic leukemia induces a distinct change in costimulatory molecule expression and shifts allogeneic T cells toward a Th1 response
.
Blood
.
2005
;
105
(
9
):
3641
-
3647
.
15.
Germain
C
,
Meier
A
,
Jensen
T
, et al
.
Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-gamma contributes to modulate immune responses
.
J Biol Chem
.
2011
;
286
(
44
):
37964
-
37975
.
16.
Germain
C
,
Guillaudeux
T
,
Galsgaard
ED
, et al
.
Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin's lymphomas dampening natural killer cell functions
.
Oncoimmunology
.
2015
;
4
(
8
):
e1026503
.
17.
Gournay
V
,
Vallet
N
,
Peux
V
, et al
.
Immune landscape after allo-HSCT: TIGIT- and CD161-expressing CD4 T cells are associated with subsequent leukemia relapse
.
Blood
.
2022
;
140
(
11
):
1305
-
1321
.
18.
Kelly
RL
,
Le
D
,
Zhao
J
,
Wittrup
KD
.
Reduction of nonspecificity motifs in synthetic antibody libraries
.
J Mol Biol
.
2018
;
430
(
1
):
119
-
130
.
19.
Van Deventer
JA
,
Wittrup
KD
.
Yeast surface display for antibody isolation: library construction, library screening, and affinity maturation
.
Methods Mol Biol
.
2014
;
1131
:
151
-
181
.
20.
Angelini
A
,
Chen
TF
,
de Picciotto
S
, et al
.
Protein engineering and selection using yeast surface display
.
Methods Mol Biol
.
2015
;
1319
:
3
-
36
.
21.
Lo
M
,
Kim
HS
,
Tong
RK
, et al
.
Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice
.
J Biol Chem
.
2017
;
292
(
9
):
3900
-
3908
.
22.
Barretina
J
,
Caponigro
G
,
Stransky
N
, et al
.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
.
Nature
.
2012
;
483
(
7391
):
603
-
607
.
23.
Fergusson
JR
,
Huhn
MH
,
Swadling
L
, et al
.
CD161(int)CD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut
.
Mucosal Immunol
.
2016
;
9
(
2
):
401
-
413
.
24.
Fergusson
JR
,
Smith
KE
,
Fleming
VM
, et al
.
CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages
.
Cell Rep
.
2014
;
9
(
3
):
1075
-
1088
.
25.
Keller
AN
,
Corbett
AJ
,
Wubben
JM
,
McCluskey
J
,
Rossjohn
J
.
MAIT cells and MR1-antigen recognition
.
Curr Opin Immunol
.
2017
;
46
:
66
-
74
.
26.
Roth
TL
,
Puig-Saus
C
,
Yu
R
, et al
.
Reprogramming human T cell function and specificity with non-viral genome targeting
.
Nature
.
2018
;
559
(
7714
):
405
-
409
.
27.
Savas
P
,
Virassamy
B
,
Ye
C
, et al
.
Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis
.
Nat Med
.
2018
;
24
(
7
):
986
-
993
.
28.
Clarke
J
,
Panwar
B
,
Madrigal
A
, et al
.
Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer
.
J Exp Med
.
2019
;
216
(
9
):
2128
-
2149
.
29.
Banchereau
R
,
Chitre
AS
,
Scherl
A
, et al
.
Intratumoral CD103+ CD8+ T cells predict response to PD-L1 blockade
.
J Immunother Cancer
.
2021
;
9
(
4
):
e002231
.
30.
Luoma
AM
,
Suo
S
,
Wang
Y
, et al
.
Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy
.
Cell
.
2022
;
185
(
16
):
2918
-
2935.e29
.
31.
de Andrade
LF
,
Lu
Y
,
Luoma
A
, et al
.
Discovery of specialized NK cell populations infiltrating human melanoma metastases
.
JCI Insight
.
2019
;
4
(
23
):
e133103
.
32.
Fangazio
M
,
Ladewig
E
,
Gomez
K
, et al
.
Genetic mechanisms of HLA-I loss and immune escape in diffuse large B cell lymphoma
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
22
):
e2104504118
.
33.
Weiner
GJ
.
Rituximab: mechanism of action
.
Semin Hematol
.
2010
;
47
(
2
):
115
-
123
.
34.
Burger
JA
,
Tedeschi
A
,
Barr
PM
, et al
.
Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia
.
N Engl J Med
.
2015
;
373
(
25
):
2425
-
2437
.
35.
Long
M
,
Beckwith
K
,
Do
P
, et al
.
Ibrutinib treatment improves T cell number and function in CLL patients
.
J Clin Invest
.
2017
;
127
(
8
):
3052
-
3064
.
You do not currently have access to this content.
Sign in via your Institution