• Thrombin-activated iMKs contract plasma clots by pulling on fibrin fibers with plasma membrane protrusions.

  • Nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3–fibrin interactions are essential for clot contraction by MKs.

Abstract

Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3–fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.

1.
Brito
C
,
Sousa
S
.
Non-muscle myosin 2A (NM2A): structure, regulation and function
.
Cells
.
2020
;
9
(
7
):
1590
.
2.
Conti
MA
,
Adelstein
RS
.
Nonmuscle myosin II moves in new directions
.
J Cell Sci
.
2008
;
121
(
Pt 1
):
11
-
18
.
3.
Wylie
SR
,
Chantler
PD
.
Myosin IIA drives neurite retraction
.
Mol Biol Cell
.
2003
;
14
(
11
):
4654
-
4666
.
4.
Wozniak
MA
,
Chen
CS
.
Mechanotransduction in development: a growing role for contractility
.
Nat Rev Mol Cell Biol
.
2009
;
10
(
1
):
34
-
43
.
5.
Munjal
A
,
Lecuit
T
.
Actomyosin networks and tissue morphogenesis
.
Development
.
2014
;
141
(
9
):
1789
-
1793
.
6.
Green
RA
,
Paluch
E
,
Oegema
K
.
Cytokinesis in animal cells
.
Annu Rev Cell Dev Biol
.
2012
;
28
(
1
):
29
-
58
.
7.
Vicente-Manzanares
M
,
Ma
X
,
Adelstein
RS
,
Horwitz
AR
.
Non-muscle myosin II takes centre stage in cell adhesion and migration
.
Nat Rev Mol Cell Biol
.
2009
;
10
(
11
):
778
-
790
.
8.
Pathak
D
,
Sepp
KJ
,
Hollenbeck
PJ
.
Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria
.
J Neurosci
.
2010
;
30
(
26
):
8984
-
8992
.
9.
Lo
C-M
,
Buxton
DB
,
Chua
GCH
,
Dembo
M
,
Adelstein
RS
,
Wang
YL
.
Nonmuscle myosin IIB is involved in the guidance of fibroblast migration
.
Mol Biol Cell
.
2004
;
15
(
3
):
982
-
989
.
10.
Omelchenko
T
,
Vasiliev
JM
,
Gelfand
IM
,
Feder
HH
,
Bonder
EM
.
Mechanisms of polarization of the shape of fibroblasts and epitheliocytes: separation of the roles of microtubules and Rho-dependent actin–myosin contractility
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
16
):
10452
-
10457
.
11.
Kim
OV
,
Litvinov
RI
,
Alber
MS
,
Weisel
JW
.
Quantitative structural mechanobiology of platelet-driven blood clot contraction
.
Nat Commun
.
2017
;
8
(
1
):
1274
-
1284
.
12.
Tutwiler
V
,
Litvinov
RI
,
Lozhkin
AP
, et al
.
Kinetics and mechanics of clot contraction are governed by the molecular and cellular composition of the blood
.
Blood
.
2016
;
127
(
1
):
149
-
159
.
13.
Khismatullin
RR
,
Nagaswami
C
,
Shakirova
AZ
, et al
.
Quantitative morphology of cerebral thrombi related to intravital contraction and clinical features of ischemic stroke
.
Stroke
.
2020
;
51
(
12
):
3640
-
3650
.
14.
Cines
DB
,
Lebedeva
T
,
Nagaswami
C
, et al
.
Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin
.
Blood
.
2014
;
123
(
10
):
1596
-
1603
.
15.
Newell-Litwa
KA
,
Horwitz
R
,
Lamers
ML
.
Non-muscle myosin II in disease: mechanisms and therapeutic opportunities
.
Dis Model Mech
.
2015
;
8
(
12
):
1495
-
1515
.
16.
Ma
X
,
Adelstein
RS
.
The role of vertebrate nonmuscle myosin II in development and human disease
.
Bioarchitecture
.
2014
;
4
(
3
):
88
-
102
.
17.
Kovács
M
,
Thirumurugan
K
,
Knight
PJ
,
Sellers
JR
.
Load-dependent mechanism of nonmuscle myosin 2
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
24
):
9994
-
9999
.
18.
Peng
Y
,
Chen
Z
,
He
Y
, et al
.
Non-muscle myosin II isoforms orchestrate substrate stiffness sensing to promote cancer cell contractility and migration
.
Cancer Lett
.
2022
;
524
:
245
-
258
.
19.
Johnson
GJ
,
Leis
LA
,
Krumwiede
MD
,
White
JG
.
The critical role of myosin IIA in platelet internal contraction
.
J Thromb Haemost
.
2007
;
5
(
7
):
1516
-
1529
.
20.
Lu
Y-Y
,
Fang
C-C
,
Hong
C-H
, et al
.
Nonmuscle myosin II activation regulates cell proliferation, cell contraction, and myofibroblast differentiation in keloid-derived fibroblasts
.
Adv Wound Care
.
2020
;
9
(
9
):
491
-
501
.
21.
Shutova
MS
,
Asokan
SB
,
Talwar
S
,
Assoian
RK
,
Bear
JE
,
Svitkina
TM
.
Self-sorting of nonmuscle myosins IIA and IIB polarizes the cytoskeleton and modulates cell motility
.
J Cell Biol
.
2017
;
216
(
9
):
2877
-
2889
.
22.
Feghhi
S
,
Tooley
WW
,
Sniadecki
NJ
.
Nonmuscle myosin IIA regulates platelet contractile forces through rho kinase and myosin light-chain kinase
.
J Biomech Eng
.
2016
;
138
(
10
):
1045061
-
1045064
.
23.
Chen
Y
,
Boukour
S
,
Milloud
R
, et al
.
The abnormal proplatelet formation in MYH9-related macrothrombocytopenia results from an increased actomyosin contractility and is rescued by myosin IIA inhibition
.
J Thromb Haemost
.
2013
;
11
(
12
):
2163
-
2175
.
24.
Pal
K
,
Nowak
R
,
Billington
N
, et al
.
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease
.
Blood
.
2020
;
135
(
21
):
1887
-
1898
.
25.
Chen
Z
,
Naveiras
O
,
Balduini
A
, et al
.
The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway
.
Blood
.
2007
;
110
(
1
):
171
-
179
.
26.
Chang
Y
,
Auradé
F
,
Larbret
F
, et al
.
Proplatelet formation is regulated by the Rho/ROCK pathway
.
Blood
.
2007
;
109
(
10
):
4229
-
4236
.
27.
Thon
JN
,
Macleod
H
,
Begonja
AJ
, et al
.
Microtubule and cortical forces determine platelet size during vascular platelet production
.
Nat Commun
.
2012
;
3
(
1
):
852
.
28.
Dunois-Lardé
C
,
Capron
C
,
Fichelson
S
,
Bauer
T
,
Cramer-Bordé
E
,
Baruch
D
.
Exposure of human megakaryocytes to high shear rates accelerates platelet production
.
Blood
.
2009
;
114
(
9
):
1875
-
1883
.
29.
Italiano
JE
,
Lecine
P
,
Shivdasani
RA
,
Hartwig
JH
.
Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes
.
J Cell Biol
.
1999
;
147
(
6
):
1299
-
1312
.
30.
Radley
JM
,
Scurfield
G
.
The mechanism of platelet release
.
Blood
.
1980
;
56
(
6
):
996
-
999
.
31.
Pecci
A
,
Bozzi
V
,
Panza
E
, et al
.
Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells
.
Thromb Haemost
.
2011
;
106
(
4
):
693
-
704
.
32.
Rapkiewicz
AV
,
Mai
X
,
Carsons
SE
, et al
.
Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: a case series
.
eClinicalMedicine
.
2020
;
24
:
100434
.
33.
Valdivia-Mazeyra
MF
,
Salas
C
,
Nieves-Alonso
JM
, et al
.
Increased number of pulmonary megakaryocytes in COVID-19 patients with diffuse alveolar damage: an autopsy study with clinical correlation and review of the literature
.
Virchows Arch
.
2021
;
478
(
3
):
487
-
496
.
34.
Carsana
L
,
Sonzogni
A
,
Nasr
A
, et al
.
Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study
.
Lancet Infect Dis
.
2020
;
20
(
10
):
1135
-
1140
.
35.
Fortmann
SD
,
Patton
MJ
,
Frey
BF
, et al
.
Circulating SARS-CoV-2+ megakaryocytes associate with severe viral infection in COVID-19
.
Blood Adv
.
2023
;
7
(
15
):
4200
-
4214
.
36.
Leong
L
,
Chernysh
IN
,
Xu
Y
, et al
.
Clot stability as a determinant of effective factor VIII replacement in hemophilia A
.
Res Pract Thromb Haemost
.
2017
;
1
(
2
):
231
-
241
.
37.
Peshkova
AD
,
Malyasyov
DV
,
Bredikhin
RA
, et al
.
Reduced contraction of blood clots in venous thromboembolism is a potential thrombogenic and embologenic mechanism
.
TH Open
.
2018
;
2
(
1
):
e104
-
e115
.
38.
Tutwiler
V
,
Peshkova
AD
,
Le Minh
G
, et al
.
Blood clot contraction differentially modulates internal and external fibrinolysis
.
J Thromb Haemost
.
2019
;
17
(
2
):
361
-
370
.
39.
Tutwiler
V
,
Peshkova
AD
,
Andrianova
IA
,
Khasanova
DR
,
Weisel
JW
,
Litvinov
RI
.
Contraction of blood clots is impaired in acute ischemic stroke
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
2
):
271
-
279
.
40.
Khismatullin
RR
,
Abdullayeva
S
,
Peshkova
AD
, et al
.
Extent of intravital contraction of arterial and venous thrombi and pulmonary emboli
.
Blood Adv
.
2022
;
6
(
6
):
1708
-
1718
.
41.
Arrondel
C
,
Vodovar
N
,
Knebelmann
B
, et al
.
Expression of the nonmuscle myosin heavy chain IIA in the human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes
.
J Am Soc Nephrol
.
2002
;
13
(
1
):
65
-
74
.
42.
Safiullina
SI
,
Evtugina
NG
,
Andrianova
IA
, et al
.
A familial case of MYH9 gene mutation associated with multiple functional and structural platelet abnormalities
.
Sci Rep
.
2022
;
12
(
1
):
19975
.
43.
Nurden
AT
.
Glanzmann thrombasthenia
.
Orphanet J Rare Dis
.
2006
;
1
(
1
):
10
.
44.
Mills
JA
,
Paluru
P
,
Weiss
MJ
,
Gadue
P
,
French
DL
.
Hematopoietic differentiation of pluripotent stem cells in culture
.
Methods Mol Biol
.
2014
;
1185
:
181
-
194
.
45.
Borst
S
,
Nations
CC
,
Klein
JG
, et al
.
Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model
.
Stem Cell Reports
.
2021
;
16
(
6
):
1458
-
1467
.
46.
Xavier-Ferrucio
J
,
Krause
DS
.
Concise review: bipotent megakaryocytic-erythroid progenitors: concepts and controversies
.
Stem Cells
.
2018
;
36
(
8
):
1138
-
1145
.
47.
Shattil
SJ
,
Hoxie
JA
,
Cunningham
M
,
Brass
LF
.
Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation
.
J Biol Chem
.
1985
;
260
(
20
):
11107
-
11114
.
48.
Sugimoto
N
,
Eto
K
.
Generation and manipulation of human iPSC-derived platelets
.
Cell Mol Life Sci
.
2021
;
78
(
7
):
3385
-
3401
.
49.
Borst
S
,
Sim
X
,
Poncz
M
,
French
DL
,
Gadue
P
.
Induced pluripotent stem cell–derived megakaryocytes and platelets for disease modeling and future clinical applications
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
11
):
2007
-
2013
.
50.
Kammers
K
,
Taub
MA
,
Rodriguez
B
, et al
.
Transcriptional profile of platelets and iPSC-derived megakaryocytes from whole-genome and RNA sequencing
.
Blood
.
2021
;
137
(
7
):
959
-
968
.
51.
Pineault
N
,
Boisjoli
GJ
.
Megakaryopoiesis and ex vivo differentiation of stem cells into megakaryocytes and platelets
.
ISBT Sci Ser
.
2015
;
10
(
S1
):
154
-
162
.
52.
Matsunaga
T
,
Tanaka
I
,
Kobune
M
, et al
.
Ex vivo large-scale generation of human platelets from cord blood CD34+ cells
.
Stem Cells
.
2006
;
24
(
12
):
2877
-
2887
.
53.
Sim
X
,
Poncz
M
,
Gadue
P
,
French
DL
.
Understanding platelet generation from megakaryocytes: implications for in vitro–derived platelets
.
Blood
.
2016
;
127
(
10
):
1227
-
1233
.
54.
Moroi
AJ
,
Newman
PJ
.
Conditional CRISPR-mediated deletion of Lyn kinase enhances differentiation and function of iPSC-derived megakaryocytes
.
J Thromb Haemost
.
2022
;
20
(
1
):
182
-
195
.
55.
Zhang
N
,
Zhi
H
,
Curtis
BR
, et al
.
CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes
.
Blood
.
2016
;
127
(
6
):
675
-
680
.
56.
Börger
AK
,
Eicke
D
,
Wolf
C
, et al
.
Generation of HLA-universal iPSC-derived megakaryocytes and platelets for survival under refractoriness conditions
.
Mol Med
.
2016
;
22
(
1
):
274
-
285
.
57.
Eckly
A
,
Strassel
C
,
Freund
M
, et al
.
Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation
.
Blood
.
2009
;
113
(
14
):
3182
-
3189
.
58.
Spinler
KR
,
Shin
J-W
,
Lambert
MP
,
Discher
DE
.
Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia
.
Blood
.
2015
;
125
(
3
):
525
-
533
.
59.
Eckly
A
,
Scandola
C
,
Oprescu
A
, et al
.
Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids
.
J Thromb Haemost
.
2020
;
18
(
11
):
2987
-
3001
.
60.
Pecci
A
,
Ma
X
,
Savoia
A
,
Adelstein
RS
.
MYH9: structure, functions and role of non-muscle myosin IIA in human disease
.
Gene
.
2018
;
664
:
152
-
167
.
61.
Althaus
K
,
Greinacher
A
.
MYH9-related platelet disorders
.
Semin Thromb Hemost
.
2009
;
35
(
2
):
189
-
203
.
62.
Wang
Y
,
Hayes
V
,
Jarocha
D
, et al
.
Comparative analysis of human ex vivo–generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale
.
Blood
.
2015
;
125
(
23
):
3627
-
3636
.
63.
Sim
X
,
Jarocha
D
,
Hayes
V
, et al
.
Identifying and enriching platelet-producing human stem cell–derived megakaryocytes using factor V uptake
.
Blood
.
2017
;
130
(
2
):
192
-
204
.
64.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature
.
2017
;
544
(
7648
):
105
-
109
.
65.
Kaufman
RM
,
Airo
R
,
Pollack
S
,
Crosby
WH
,
Doberneck
R
.
Origin of pulmonary megakaryocytes
.
Blood
.
1965
;
25
(
5
):
767
-
775
.
66.
Levine
RF
,
Eldor
A
,
Shoff
PK
,
Kirwin
S
,
Tenza
D
,
Cramer
EM
.
Circulating megakaryocytes: delivery of large numbers of intact, mature megakaryocytes to the lungs
.
Eur J Haematol
.
1993
;
51
(
4
):
233
-
246
.
67.
Boilard
E
,
Machlus
KR
.
Peripheral megakaryocytes sound the alarm in COVID-19
.
Blood Adv
.
2023
;
7
(
15
):
4197
-
4199
.
68.
Litvinov
RI
,
Evtugina
NG
,
Peshkova
AD
, et al
.
Altered platelet and coagulation function in moderate-to-severe COVID-19
.
Sci Rep
.
2021
;
11
(
1
):
16290
.
69.
Litvinov
RI
,
Weisel
JW
.
Blood clot contraction: mechanisms, pathophysiology, and disease
.
Res Pract Thromb Haemost
.
2023
;
7
(
1
):
100023
.
70.
Dejima
H
,
Nakanishi
H
,
Kuroda
H
, et al
.
Detection of abundant megakaryocytes in pulmonary artery blood in lung cancer patients using a microfluidic platform
.
Lung Cancer
.
2018
;
125
:
128
-
135
.
71.
Zhu
J
,
Guo
W
,
Wang
B
.
Megakaryocytes in peripheral blood smears of non-hematological diseases
.
Int J Hematol
.
2020
;
112
(
1
):
128
-
130
.
72.
Stone
AP
,
Nascimento
TF
,
Barrachina
MN
.
The bone marrow niche from the inside out: how megakaryocytes are shaped by and shape hematopoiesis
.
Blood
.
2022
;
139
(
4
):
483
-
491
.
73.
Malara
A
,
Currao
M
,
Gruppi
C
, et al
.
Megakaryocytes contribute to the bone marrow-matrix environment by expressing fibronectin, type IV collagen, and laminin
.
Stem Cells
.
2014
;
32
(
4
):
926
-
937
.
74.
Malara
A
,
Abbonante
V
,
Di Buduo
CA
,
Tozzi
L
,
Currao
M
,
Balduini
A
.
The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control
.
Cell Mol Life Sci
.
2015
;
72
(
8
):
1517
-
1536
.
75.
Soves
CP
,
Miller
JD
,
Begun
DL
,
Taichman
RS
,
Hankenson
KD
,
Goldstein
SA
.
Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation
.
Bone
.
2014
;
66
:
111
-
120
.
76.
Tang
Y
,
Hu
M
,
Xu
Y
, et al
.
Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1
.
Theranostics
.
2020
;
10
(
5
):
2229
-
2242
.
77.
Lam
WA
,
Chaudhuri
O
,
Crow
A
, et al
.
Mechanics and contraction dynamics of single platelets and implications for clot stiffening
.
Nat Mater
.
2011
;
10
(
1
):
61
-
66
.
78.
Williams
EK
,
Oshinowo
O
,
Ravindran
A
,
Lam
WA
,
Myers
DR
.
Feeling the force: measurements of platelet contraction and their diagnostic implications
.
Semin Thromb Hemost
.
2019
;
45
(
3
):
285
-
296
.
79.
Petrich
BG
,
Marchese
P
,
Ruggeri
ZM
, et al
.
Talin is required for integrin-mediated platelet function in hemostasis and thrombosis
.
J Exp Med
.
2007
;
204
(
13
):
3103
-
3111
.
80.
Fong
KP
,
Molnar
KS
,
Agard
N
, et al
.
Cleavage of talin by calpain promotes platelet-mediated fibrin clot contraction
.
Blood Adv
.
2021
;
5
(
23
):
4901
-
4909
.
81.
Radley
JM
,
Hartshorn
MA
,
Green
SL
.
The response of megakaryocytes with processes to thrombin
.
Thromb Haemost
.
1987
;
58
(
2
):
732
-
736
.
82.
Cramer
EM
,
Massé
JM
,
Caen
JP
, et al
.
Effect of thrombin on maturing human megakaryocytes
.
Am J Pathol
.
1993
;
143
(
5
):
1498
-
1508
.
83.
Levine
R
,
Eldor
A
,
HyAm
E
,
Gamliel
H
,
Fuks
Z
,
Vlodavsky
I
.
Megakaryocyte interaction with subendothelial extracellular matrix is associated with adhesion, platelet-like shape change, and thromboxane A2 production
.
Blood
.
1985
;
66
(
3
):
570
-
576
.
84.
Paluch
E
,
Sykes
C
,
Prost
J
,
Bornens
M
.
Dynamic modes of the cortical actomyosin gel during cell locomotion and division
.
Trends Cell Biol
.
2006
;
16
(
1
):
5
-
10
.
85.
Charras
G
,
Paluch
E
.
Blebs lead the way: how to migrate without lamellipodia
.
Nat Rev Mol Cell Biol
.
2008
;
9
(
9
):
730
-
736
.
86.
Fackler
OT
,
Grosse
R
.
Cell motility through plasma membrane blebbing
.
J Cell Biol
.
2008
;
181
(
6
):
879
-
884
.
87.
Mills
JC
,
Stone
NL
,
Erhardt
J
,
Pittman
RN
.
Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation
.
J Cell Biol
.
1998
;
140
(
3
):
627
-
636
.
88.
Yoshida
K
,
Soldati
T
.
Dissection of amoeboid movement into two mechanically distinct modes
.
J Cell Sci
.
2006
;
119
(
pt 18
):
3833
-
3844
.
89.
Berg
JS
,
Cheney
RE
.
Myosin-X is an unconventional myosin that undergoes intrafilopodial motility
.
Nat Cell Biol
.
2002
;
4
(
3
):
246
-
250
.
90.
Kerber
ML
,
Jacobs
DT
,
Campagnola
L
, et al
.
A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level
.
Curr Biol
.
2009
;
19
(
11
):
967
-
973
.
91.
Schäfer
C
,
Faust
U
,
Kirchgeßner
N
,
Merkel
R
,
Hoffmann
B
.
The filopodium
.
Cell Adh Migr
.
2011
;
5
(
5
):
431
-
438
.
92.
Watanabe
TM
,
Tokuo
H
,
Gonda
K
,
Higuchi
H
,
Ikebe
M
.
Myosin-X induces filopodia by multiple elongation mechanism
.
J Biol Chem
.
2010
;
285
(
25
):
19605
-
19614
.
93.
Bornschlögl
T
.
How filopodia pull: what we know about the mechanics and dynamics of filopodia
.
Cytoskeleton (Hoboken)
.
2013
;
70
(
10
):
590
-
603
.
94.
White
JG
. Platelet structure. In:
Michelson
AD
, eds.
Platelets
. 2nd ed..
Academic Press
;
2007
:
45
-
73
.
You do not currently have access to this content.
Sign in via your Institution