• Patients with MM patients have increased CD16/CD226Low NK cell subsets characterized by adhesion defects and reduced effector functions.

  • The frequency of CD16/CD226Low NK cells correlates with clinical outcomes in patients MM.

Abstract

The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex–matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients’ clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM–associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.

1.
Lokhorst
HM
,
Plesner
T
,
Laubach
JP
, et al
.
Targeting CD38 with daratumumab monotherapy in multiple myeloma
.
N Engl J Med
.
2015
;
373
(
13
):
1207
-
1219
.
2.
Moreau
P
,
Attal
M
,
Hulin
C
, et al
.
Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study
.
Lancet
.
2019
;
394
(
10192
):
29
-
38
.
3.
Moreau
P
,
Garfall
AL
,
van de Donk
N
, et al
.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
4.
San-Miguel
J
,
Dhakal
B
,
Yong
K
, et al
.
Cilta-cel or standard care in lenalidomide-refractory multiple myeloma
.
N Engl J Med
.
2023
;
389
(
4
):
335
-
347
.
5.
Lannes
R
,
Samur
M
,
Perrot
A
, et al
.
In multiple myeloma, high-risk secondary genetic events observed at relapse are present from diagnosis in tiny, undetectable subclonal populations
.
J Clin Oncol
.
2023
;
41
(
9
):
1695
-
1702
.
6.
Perrot
A
,
Lauwers-Cances
V
,
Tournay
E
, et al
.
Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma
.
J Clin Oncol
.
2019
;
37
(
19
):
1657
-
1665
.
7.
Guillerey
C
,
Ferrari de Andrade
L
,
Vuckovic
S
, et al
.
Immunosurveillance and therapy of multiple myeloma are CD226 dependent
.
J Clin Invest
.
2015
;
125
(
7
):
2904
.
8.
Larrayoz
M
,
Garcia-Barchino
MJ
,
Celay
J
, et al
.
Preclinical models for prediction of immunotherapy outcomes and immune evasion mechanisms in genetically heterogeneous multiple myeloma
.
Nat Med
.
2023
;
29
(
3
):
632
-
645
.
9.
Nakamura
K
,
Smyth
MJ
,
Martinet
L
.
Cancer immunoediting and immune dysregulation in multiple myeloma
.
Blood
.
2020
;
136
(
24
):
2731
-
2740
.
10.
Nakamura
K
,
Kassem
S
,
Cleynen
A
, et al
.
Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment
.
Cancer Cell
.
2018
;
33
(
4
):
634
-
648.e5
.
11.
Guillerey
C
,
Harjunpaa
H
,
Carrie
N
, et al
.
TIGIT immune checkpoint blockade restores CD8(+) T-cell immunity against multiple myeloma
.
Blood
.
2018
;
132
(
16
):
1689
-
1694
.
12.
Weulersse
M
,
Asrir
A
,
Pichler
AC
, et al
.
Eomes-dependent loss of the co-activating receptor CD226 restrains CD8(+) T cell anti-tumor functions and limits the efficacy of cancer immunotherapy
.
Immunity
.
2020
;
53
(
4
):
824
-
839.e10
.
13.
Carbone
E
,
Neri
P
,
Mesuraca
M
, et al
.
HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells
.
Blood
.
2005
;
105
(
1
):
251
-
258
.
14.
El-Sherbiny
YM
,
Meade
JL
,
Holmes
TD
, et al
.
The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells
.
Cancer Res
.
2007
;
67
(
18
):
8444
-
8449
.
15.
Kassem
S
,
Diallo
BK
,
El-Murr
N
, et al
.
SAR442085, a novel anti-CD38 antibody with enhanced antitumor activity against multiple myeloma
.
Blood
.
2022
;
139
(
8
):
1160
-
1176
.
16.
Nijhof
IS
,
Lammerts van Bueren
JJ
,
van Kessel
B
, et al
.
Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide
.
Haematologica
.
2015
;
100
(
2
):
263
-
268
.
17.
Viola
D
,
Dona
A
,
Caserta
E
, et al
.
Daratumumab induces mechanisms of immune activation through CD38+ NK cell targeting
.
Leukemia
.
2021
;
35
(
1
):
189
-
200
.
18.
Fehniger
TA
,
Cooper
MA
.
Harnessing NK cell memory for cancer immunotherapy
.
Trends Immunol
.
2016
;
37
(
12
):
877
-
888
.
19.
Cichocki
F
,
Bjordahl
R
,
Goodridge
JP
, et al
.
Quadruple gene-engineered natural killer cells enable multi-antigen targeting for durable antitumor activity against multiple myeloma
.
Nat Commun
.
2022
;
13
(
1
):
7341
.
20.
Giang
KA
,
Boxaspen
T
,
Diao
Y
, et al
.
Affibody-based hBCMA x CD16 dual engagers for NK cell-mediated killing of multiple myeloma cells
.
N Biotechnol
.
2023
;
77
:
139
-
148
.
21.
Gauthier
L
,
Morel
A
,
Anceriz
N
, et al
.
Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity
.
Cell
.
2019
;
177
(
7
):
1701
-
1713.e16
.
22.
Vivier
E
,
Rebuffet
L
,
Narni-Mancinelli
E
,
Cornen
S
,
Igarashi
RY
,
Fantin
VR
.
Natural killer cell therapies
.
Nature
.
2024
;
626
(
8000
):
727
-
736
.
23.
Poupot
M
,
Pont
F
,
Fournie
JJ
.
Profiling blood lymphocyte interactions with cancer cells uncovers the innate reactivity of human gamma delta T cells to anaplastic large cell lymphoma
.
J Immunol
.
2005
;
174
(
3
):
1717
-
1722
.
24.
Burkhardt
DB
,
Stanley
JS
,
Tong
A
, et al
.
Quantifying the effect of experimental perturbations at single-cell resolution
.
Nat Biotechnol
.
2021
;
39
(
5
):
619
-
629
.
25.
Crinier
A
,
Milpied
P
,
Escaliere
B
, et al
.
High-dimensional single-cell analysis identifies organ-specific signatures and conserved NK cell subsets in humans and mice
.
Immunity
.
2018
;
49
(
5
):
971
-
986.e5
.
26.
Yang
C
,
Siebert
JR
,
Burns
R
, et al
.
Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome
.
Nat Commun
.
2019
;
10
(
1
):
3931
.
27.
Melsen
JE
,
Lugthart
G
,
Vervat
C
, et al
.
Human bone marrow-resident natural killer cells have a unique transcriptional profile and resemble resident memory CD8(+) T cells
.
Front Immunol
.
2018
;
9
:
1829
.
28.
Freud
AG
,
Caligiuri
MA
.
Human natural killer cell development
.
Immunol Rev
.
2006
;
214
:
56
-
72
.
29.
Hideshima
T
,
Chauhan
D
,
Schlossman
R
,
Richardson
P
,
Anderson
KC
.
The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications
.
Oncogene
.
2001
;
20
(
33
):
4519
-
4527
.
30.
Costes
V
,
Portier
M
,
Lu
ZY
,
Rossi
JF
,
Bataille
R
,
Klein
B
.
Interleukin-1 in multiple myeloma: producer cells and their role in the control of IL-6 production
.
Br J Haematol
.
1998
;
103
(
4
):
1152
-
1160
.
31.
Joly
E
,
Hudrisier
D
.
What is trogocytosis and what is its purpose?
.
Nat Immunol
.
2003
;
4
(
9
):
815
.
32.
Gross
CC
,
Brzostowski
JA
,
Liu
D
,
Long
EO
.
Tethering of intercellular adhesion molecule on target cells is required for LFA-1-dependent NK cell adhesion and granule polarization
.
J Immunol
.
2010
;
185
(
5
):
2918
-
2926
.
33.
Petit
AE
,
Demotte
N
,
Scheid
B
, et al
.
A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion
.
Nat Commun
.
2016
;
7
:
12242
.
34.
Comrie
WA
,
Babich
A
,
Burkhardt
JK
.
F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse
.
J Cell Biol
.
2015
;
208
(
4
):
475
-
491
.
35.
Orrantia
A
,
Terren
I
,
Astarloa-Pando
G
, et al
.
NK cell reconstitution after autologous hematopoietic stem cell transplantation: association between NK cell maturation stage and outcome in multiple myeloma
.
Front Immunol
.
2021
;
12
:
748207
.
36.
Attal
M
,
Lauwers-Cances
V
,
Hulin
C
, et al
.
Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma
.
N Engl J Med
.
2017
;
376
(
14
):
1311
-
1320
.
37.
Martinet
L
,
Smyth
MJ
.
Balancing natural killer cell activation through paired receptors
.
Nat Rev Immunol
.
2015
;
15
(
4
):
243
-
254
.
38.
Tang
F
,
Li
J
,
Qi
L
, et al
.
A pan-cancer single-cell panorama of human natural killer cells
.
Cell
.
2023
;
186
(
19
):
4235
-
4251.e20
.
39.
de Jong
MME
,
Chen
L
,
Raaijmakers
MHGP
,
Cupedo
T
.
Bone marrow inflammation in haematological malignancies
.
Nat Rev Immunol
.
2024
;
24
:
553
-
558
.
40.
de Jong
MME
,
Kellermayer
Z
,
Papazian
N
, et al
.
The multiple myeloma microenvironment is defined by an inflammatory stromal cell landscape
.
Nat Immunol
.
2021
;
22
(
6
):
769
-
780
.
41.
Kawano
Y
,
Zavidij
O
,
Park
J
, et al
.
Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression
.
J Clin Invest
.
2018
;
128
(
6
):
2487
-
2499
.
42.
Frassanito
MA
,
Silvestris
F
,
Cafforio
P
,
Silvestris
N
,
Dammacco
F
.
IgG M-components in active myeloma patients induce a down-regulation of natural killer cell activity
.
Int J Clin Lab Res
.
1997
;
27
(
1
):
48
-
54
.
43.
Zavidij
O
,
Haradhvala
NJ
,
Mouhieddine
TH
, et al
.
Single-cell RNA sequencing reveals compromised immune microenvironment in precursor stages of multiple myeloma
.
Nat Cancer
.
2020
;
1
(
5
):
493
-
506
.
44.
Soriani
A
,
Zingoni
A
,
Cerboni
C
, et al
.
ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype
.
Blood
.
2009
;
113
(
15
):
3503
-
3511
.
45.
Shi
J
,
Tricot
GJ
,
Garg
TK
, et al
.
Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma
.
Blood
.
2008
;
111
(
3
):
1309
-
1317
.
46.
Lundqvist
A
,
Yokoyama
H
,
Smith
A
,
Berg
M
,
Childs
R
.
Bortezomib treatment and regulatory T-cell depletion enhance the antitumor effects of adoptively infused NK cells
.
Blood
.
2009
;
113
(
24
):
6120
-
6127
.
47.
Lundqvist
A
,
Berg
M
,
Smith
A
,
Childs
RW
.
Bortezomib treatment to potentiate the anti-tumor immunity of ex-vivo expanded adoptively infused autologous natural killer cells
.
J Cancer
.
2011
;
2
:
383
-
385
.
48.
Davies
FE
,
Raje
N
,
Hideshima
T
, et al
.
Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma
.
Blood
.
2001
;
98
(
1
):
210
-
216
.
49.
Kronke
J
,
Udeshi
ND
,
Narla
A
, et al
.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
.
Science
.
2014
;
343
(
6168
):
301
-
305
.
You do not currently have access to this content.
Sign in via your Institution