• PKCα is novel and positive regulator of Fpn by modulating the trafficking and localization of Fpn.

  • Inhibition of PKCα reduces body iron content in physiology, diabetes, and hereditary hemochromatosis.

Abstract

Ferroportin (Fpn) is the only iron exporter, playing a crucial role in systemic iron homeostasis. Fpn is negatively regulated by its ligand hepcidin, but other potential regulators in physiological and disease conditions remain poorly understood. Diabetes is a metabolic disorder that develops body iron loading with unknown mechanisms. By using diabetic mouse models and human duodenal specimens, we demonstrated that intestinal Fpn expression was increased in diabetes in a hepcidin-independent manner. Protein kinase C (PKC) is hyperactivated in diabetes. We showed that PKCα was required to sustain baseline Fpn expression and diabetes-induced Fpn upregulation in the enterocytes and macrophages. Knockout of PKCα abolished diabetes-associated iron overload. Mechanistically, activation of PKCα increased the exocytotic trafficking of Fpn and decreased the endocytic trafficking of Fpn in the resting state. Hyperactive PKCα also suppressed hepcidin-induced ubiquitination, internalization, and degradation of Fpn. We further observed that iron loading in the enterocytes and macrophages activated PKCα, acting as a novel mechanism to enhance Fpn-dependent iron efflux. Finally, we demonstrated that the loss-of-function of PKCα and pharmacological inhibition of PKC significantly alleviated hereditary hemochromatosis-associated iron overload. Our study has highlighted, to our knowledge, for the first time, that PKCα is an important positive regulator of Fpn and a new target in the control of iron homeostasis.

1.
Camaschella
C
,
Nai
A
,
Silvestri
L
.
Iron metabolism and iron disorders revisited in the hepcidin era
.
Haematologica
.
2020
;
105
(
2
):
260
-
272
.
2.
Dev
S
,
Babitt
JL
.
Overview of iron metabolism in health and disease
.
Hemodial Int
.
2017
;
21
(
suppl 1
):
S6
-
S20
.
3.
Knutson
MD
.
Iron transport proteins: gateways of cellular and systemic iron homeostasis
.
J Biol Chem
.
2017
;
292
(
31
):
12735
-
12743
.
4.
Donovan
A
,
Lima
CA
,
Pinkus
JL
, et al
.
The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis
.
Cell Metab
.
2005
;
1
(
3
):
191
-
200
.
5.
Drakesmith
H
,
Nemeth
E
,
Ganz
T
.
Ironing out ferroportin
.
Cell Metab
.
2015
;
22
(
5
):
777
-
787
.
6.
Nemeth
E
,
Tuttle
MS
,
Powelson
J
, et al
.
Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization
.
Science
.
2004
;
306
(
5704
):
2090
-
2093
.
7.
Roth
MP
,
Meynard
D
,
Coppin
H
.
Regulators of hepcidin expression
.
Vitam Horm
.
2019
;
110
:
101
-
129
.
8.
Aschemeyer
S
,
Qiao
B
,
Stefanova
D
, et al
.
Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin
.
Blood
.
2018
;
131
(
8
):
899
-
910
.
9.
Bridle
KR
,
Frazer
DM
,
Wilkins
SJ
, et al
.
Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis
.
Lancet
.
2003
;
361
(
9358
):
669
-
673
.
10.
Pietrangelo
A
.
Ferroportin disease: pathogenesis, diagnosis and treatment
.
Haematologica
.
2017
;
102
(
12
):
1972
-
1984
.
11.
Fernandez-Real
JM
,
Lopez-Bermejo
A
,
Ricart
W
.
Cross-talk between iron metabolism and diabetes
.
Diabetes
.
2002
;
51
(
8
):
2348
-
2354
.
12.
Banday
MZ
,
Sameer
AS
,
Nissar
S
.
Pathophysiology of diabetes: an overview
.
Avicenna J Med
.
2020
;
10
(
4
):
174
-
188
.
13.
Harrison
AV
,
Lorenzo
FR
,
McClain
DA
.
Iron and the pathophysiology of diabetes
.
Annu Rev Physiol
.
2023
;
85
:
339
-
362
.
14.
Johnson
WT
,
Evans
GW
.
Effects of the interrelationship between dietary-protein and minerals on tissue content of trace-metals in streptozotocin-diabetic rats
.
J Nutr
.
1984
;
114
(
1
):
180
-
190
.
15.
Rowe
PA
,
Kavanagh
K
,
Zhang
L
,
Harwood
HJ
,
Wagner
JD
.
Short-term hyperglycemia increases arterial superoxide production and iron dysregulation in atherosclerotic monkeys
.
Metabolism
.
2011
;
60
(
8
):
1070
-
1080
.
16.
Wang
H
,
Li
H
,
Jiang
X
,
Shi
W
,
Shen
Z
,
Li
M
.
Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats
.
Diabetes
.
2014
;
63
(
5
):
1506
-
1518
.
17.
Zhao
L
,
Bartnikas
T
,
Chu
X
, et al
.
Hyperglycemia promotes microvillus membrane expression of DMT1 in intestinal epithelial cells in a PKCalpha-dependent manner
.
FASEB J
.
2019
;
33
(
3
):
3549
-
3561
.
18.
Koya
D
,
King
GL
.
Protein kinase C activation and the development of diabetic complications
.
Diabetes
.
1998
;
47
(
6
):
859
-
866
.
19.
Shawki
A
,
Anthony
SR
,
Nose
Y
, et al
.
Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese
.
Am J Physiol Gastrointest Liver Physiol
.
2015
;
309
(
8
):
G635
-
G647
.
20.
Tomino
Y
.
Lessons from the KK-Ay mouse, a spontaneous animal model for the treatment of human type 2 diabetic nephropathy
.
Nephro-Urol Mon
.
2012
;
4
(
3
):
524
-
529
.
21.
Clegg
GA
,
Fitton
JE
,
Harrison
PM
,
Treffry
A
.
Ferritin: molecular structure and iron-storage mechanisms
.
Prog Biophys Mol Biol
.
1980
;
36
(
2-3
):
56
-
86
.
22.
Chung
B
,
Matak
P
,
McKie
AT
,
Sharp
P
.
Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells
.
J Nutr
.
2007
;
137
(
11
):
2366
-
2370
.
23.
Yamamoto
K
,
Kuragano
T
,
Kimura
T
,
Nanami
M
,
Hasuike
Y
,
Nakanishi
T
.
Interplay of adipocyte and hepatocyte: leptin upregulates hepcidin
.
Biochem Biophys Res Commun
.
2018
;
495
(
1
):
1548
-
1554
.
24.
Geraldes
P
,
King
GL
.
Activation of protein kinase C isoforms and its impact on diabetic complications
.
Circ Res
.
2010
;
106
(
8
):
1319
-
1331
.
25.
Qiao
B
,
Sugianto
P
,
Fung
E
, et al
.
Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination
.
Cell Metab
.
2012
;
15
(
6
):
918
-
924
.
26.
Soh
JW
,
Weinstein
IB
.
Roles of specific isoforms of protein kinase C in the transcriptional control of cyclin D1 and related genes
.
J Biol Chem
.
2003
;
278
(
36
):
34709
-
34716
.
27.
Weber
RA
,
Yen
FS
,
Nicholson
SPV
, et al
.
Maintaining iron homeostasis is the key role of lysosomal acidity for cell proliferation
.
Mol Cell
.
2020
;
77
(
3
):
645
-
655.e7
.
28.
Chen
B
,
Das
NK
,
Talukder
I
, et al
.
PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool
.
J Biol Chem
.
2023
;
299
(
5
):
104691
.
29.
Wilkinson
N
,
Pantopoulos
K
.
The IRP/IRE system in vivo: insights from mouse models
.
Front Pharmacol
.
2014
;
5
:
176
.
30.
Stansfield
LC
,
Pollyea
DA
.
A new oral agent targeting FMS-like tyrosine kinase 3-mutant acute myeloid leukemia
.
Pharmacotherapy
.
2017
;
37
(
12
):
1586
-
1599
.
31.
Stone
RM
,
Manley
PW
,
Larson
RA
,
Capdeville
R
.
Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis
.
Blood Adv
.
2018
;
2
(
4
):
444
-
453
.
32.
Altamura
S
,
Kopf
S
,
Schmidt
J
, et al
.
Uncoupled iron homeostasis in type 2 diabetes mellitus
.
J Mol Med
.
2017
;
95
(
12
):
1387
-
1398
.
33.
Bonet
A
,
Pampalona
J
,
Jose-Cunilleras
E
,
Nacher
V
,
Ruberte
J
.
Ferritin but not iron increases in retina upon systemic iron overload in diabetic and iron-dextran injected mice
.
Invest Ophthalmol Vis Sci
.
2023
;
64
(
3
):
22
.
34.
Song
JX
,
An
JR
,
Chen
Q
, et al
.
Liraglutide attenuates hepatic iron levels and ferroptosis in db/db mice
.
Bioengineered
.
2022
;
13
(
4
):
8334
-
8348
.
35.
Altamura
S
,
Mudder
K
,
Schlotterer
A
, et al
.
Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload
.
Mol Metab
.
2021
;
51
:
101235
.
36.
Zheng
X
,
Jiang
T
,
Wu
H
, et al
.
Hepatic iron stores are increased as assessed by magnetic resonance imaging in a Chinese population with altered glucose homeostasis
.
Am J Clin Nutr
.
2011
;
94
(
4
):
1012
-
1019
.
37.
Thomas
MC
,
MacIsaac
RJ
,
Tsalamandris
C
,
Power
D
,
Jerums
G
.
Unrecognized anemia in patients with diabetes: a cross-sectional survey
.
Diabetes Care
.
2003
;
26
(
4
):
1164
-
1169
.
38.
Thomas
MC
,
Cooper
ME
,
Tsalamandris
C
,
MacIsaac
R
,
Jerums
G
.
Anemia with impaired erythropoietin response in diabetic patients
.
Arch Intern Med
.
2005
;
165
(
4
):
466
-
469
.
39.
Thomas
MC
,
Tsalamandris
C
,
Macisaac
R
,
Jerums
G
.
Functional erythropoietin deficiency in patients with type 2 diabetes and anaemia
.
Diabet Med
.
2006
;
23
(
5
):
502
-
509
.
40.
Verga Falzacappa
MV
,
Vujic Spasic
M
,
Kessler
R
,
Stolte
J
,
Hentze
MW
,
Muckenthaler
MU
.
STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation
.
Blood
.
2007
;
109
(
1
):
353
-
358
.
41.
Wrighting
DM
,
Andrews
NC
.
Interleukin-6 induces hepcidin expression through STAT3
.
Blood
.
2006
;
108
(
9
):
3204
-
3209
.
42.
He
P
,
Zhao
L
,
Zhu
L
, et al
.
Restoration of Na+/H+ exchanger NHE3-containing macrocomplexes ameliorates diabetes-associated fluid loss
.
J Clin Invest
.
2015
;
125
(
9
):
3519
-
3531
.
43.
Blanco
AM
,
Bertucci
JI
,
Ramesh
N
,
Delgado
MJ
,
Valenciano
AI
,
Unniappan
S
.
Ghrelin facilitates GLUT2-SGLT1- and SGLT2-mediated intestinal glucose transport in goldfish (Carassius auratus)
.
Sci Rep
.
2017
;
7
:
45024
.
44.
Evans
JH
,
Murray
D
,
Leslie
CC
,
Falke
JJ
.
Specific translocation of protein kinase Calpha to the plasma membrane requires both Ca2+ and PIP2 recognition by its C2 domain
.
Mol Biol Cell
.
2006
;
17
(
1
):
56
-
66
.
45.
Larsson
C
.
Protein kinase C and the regulation of the actin cytoskeleton
.
Cell Signal
.
2006
;
18
(
3
):
276
-
284
.
46.
Fanning
AS
,
Anderson
JM
.
PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane
.
J Clin Invest
.
1999
;
103
(
6
):
767
-
772
.
47.
Andreeva
AY
,
Krause
E
,
Muller
EC
,
Blasig
IE
,
Utepbergenov
DI
.
Protein kinase C regulates the phosphorylation and cellular localization of occludin
.
J Biol Chem
.
2001
;
276
(
42
):
38480
-
38486
.
48.
Lee
EE
,
Ma
J
,
Sacharidou
A
, et al
.
A protein kinase C phosphorylation motif in GLUT1 affects glucose transport and is mutated in GLUT1 deficiency syndrome
.
Mol Cell
.
2015
;
58
(
5
):
845
-
853
.
49.
Traeger
L
,
Wiegand
SB
,
Sauer
AJ
, et al
.
UBA6 and NDFIP1 regulate the degradation of ferroportin
.
Haematologica
.
2022
;
107
(
2
):
478
-
488
.
50.
Jiang
L
,
Wang
J
,
Wang
K
, et al
.
RNF217 regulates iron homeostasis through its E3 ubiquitin ligase activity by modulating ferroportin degradation
.
Blood
.
2021
;
138
(
8
):
689
-
705
.
51.
Gonzalez
P
,
Lozano
P
,
Ros
G
,
Solano
F
.
Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections
.
Int J Mol Sci
.
2023
;
24
(
11
):
9352
.
52.
Wang
Y
,
Wang
M
,
Liu
Y
, et al
.
Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores
.
Redox Biol
.
2022
;
55
:
102407
.
53.
Taylor
M
,
Qu
A
,
Anderson
ER
, et al
.
Hypoxia-inducible factor-2alpha mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice
.
Gastroenterology
.
2011
;
140
(
7
):
2044
-
2055
.
You do not currently have access to this content.
Sign in via your Institution