• Discovery of a novel CD39+ T-cell population that predicts AIHA onset due to ICPi therapy.

  • This study demonstrates that apyrase acts as a novel therapeutic, effectively mitigating ICPi-induced AIHA.

Abstract

Immune checkpoint inhibitors (ICPis) have revolutionized cancer immunotherapy but also can induce autoimmune hemolytic anemia (AIHA), a severe disease with high mortality. However, the cellular and molecular mechanism(s) of AIHA secondary to ICPi therapy (ICPi-AIHA) are unclear, other than being initiated through decreased checkpoint inhibition. Herein, we report ICPi-AIHA in a novel mouse model that shows similar characteristics of known human ICPi-AIHA (eg, autoantibodies, hemolysis, and increased mortality). During ICPi-AIHA, there is the simultaneous reduction of 2 regulatory T-cell populations (FoxP3+ and Tr1 [type 1 regulatory cells]) and an increase in inflammatory T helper cell 17 (TH17). Moreover, a novel CD39+CD73FoxP3CD25 CD4+ T-cell subset (ie, CD39 single positive [CD39SP]) emerges, and early increases in CD39SP predict AIHA development; CD39 is an ectonuclease that breaks down adenosine triphosphate (ATP). Additionally, we found that boosting ATPase activity by injecting recombinant apyrase mitigates AIHA development and significant CD39SP reductions, both suggesting a functional role for CD39 and demonstrating a novel therapeutic approach. Importantly, CD39SP are detectable in multiple mouse models developing AIHA and in patients with AIHA, demonstrating applicability to idiopathic and secondary AIHA. Highlighting broader autoimmunity relevance, ICPi-treated NZB mice experienced accelerated onset and severity of lupus, including AIHA. Moreover, ICPi treatment of healthy B6 animals led to detectable CD39SP and development of autoantibodies against multiple autoantigens including those on red blood cells and platelets. Together, our findings provide further insight into the cellular and molecular mechanisms of ICPi-AIHA, leading to novel diagnostic and therapeutic approaches with translational potential for use in humans being treated with ICPi.

1.
Postow
MA
,
Callahan
MK
,
Wolchok
JD
.
Immune checkpoint blockade in cancer therapy
.
J Clin Oncol
.
2015
;
33
(
17
):
1974
-
1982
.
2.
Rowshanravan
B
,
Halliday
N
,
Sansom
DM
.
CTLA-4: a moving target in immunotherapy
.
Blood
.
2018
;
131
(
1
):
58
-
67
.
3.
Thudium
K
,
Selby
M
,
Zorn
JA
, et al
.
Preclinical characterization of relatlimab, a human LAG-3-blocking antibody, alone or in combination with nivolumab
.
Cancer Immunol Res
.
2022
;
10
(
10
):
1175
-
1189
.
4.
Martins
F
,
Sofiya
L
,
Sykiotis
GP
, et al
.
Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance
.
Nat Rev Clin Oncol
.
2019
;
16
(
9
):
563
-
580
.
5.
Khan
U
,
Ali
F
,
Khurram
MS
,
Zaka
A
,
Hadid
T
.
Immunotherapy-associated autoimmune hemolytic anemia
.
J Immunother Cancer
.
2017
;
5
:
15
.
6.
Leaf
RK
,
Ferreri
C
,
Rangachari
D
, et al
.
Clinical and laboratory features of autoimmune hemolytic anemia associated with immune checkpoint inhibitors
.
Am J Hematol
.
2019
;
94
(
5
):
563
-
574
.
7.
Tanios
GE
,
Doley
PB
,
Munker
R
.
Autoimmune hemolytic anemia associated with the use of immune checkpoint inhibitors for cancer: 68 cases from the Food and Drug Administration database and review
.
Eur J Haematol
.
2019
;
102
(
2
):
157
-
162
.
8.
Hudson
KE
,
Hendrickson
JE
,
Cadwell
CM
,
Iwakoshi
NN
,
Zimring
JC
.
Partial tolerance of autoreactive B and T cells to erythrocyte-specific self-antigens in mice
.
Haematologica
.
2012
;
97
(
12
):
1836
-
1844
.
9.
Wong
ASL
,
Gruber
DR
,
Richards
AL
, et al
.
Tolerization of recent thymic emigrants is required to prevent RBC-specific autoimmunity
.
J Autoimmun
.
2020
;
114
:
102489
.
10.
Dei
Zotti F
,
Qiu
A
,
La Carpia
F
,
Moriconi
C
,
Hudson
KE
.
A new murine model of primary autoimmune hemolytic anemia (AIHA)
.
Front Immunol
.
2021
;
12
:
752330
.
11.
Quintero
OL
,
Amador-Patarroyo
MJ
,
Montoya-Ortiz
G
,
Rojas-Villarraga
A
,
Anaya
JM
.
Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity
.
J Autoimmun
.
2012
;
38
(
2-3
):
J109
-
J119
.
12.
Desmarets
M
,
Cadwell
CM
,
Peterson
KR
,
Neades
R
,
Zimring
JC
.
Minor histocompatibility antigens on transfused leukoreduced units of red blood cells induce bone marrow transplant rejection in a mouse model
.
Blood
.
2009
;
114
(
11
):
2315
-
2322
.
13.
Dei Zotti
F
,
Moriconi
C
,
Qiu
A
,
Miller
A
,
Hudson
KE
.
Distinct CD4+ T cell signature in ANA-positive young adult patients
.
Front Immunol
.
2022
;
13
:
972127
.
14.
Coover
RA
,
Healy
TE
,
Guo
L
, et al
.
Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1
.
Acta Neuropathol Commun
.
2018
;
6
(
1
):
127
.
15.
Thomas
TA
,
Qiu
A
,
Kim
CY
, et al
.
Reticulocytes in donor blood units enhance red blood cell alloimmunization
.
Haematologica
.
2023
;
108
(
10
):
2639
-
2651
.
16.
Fink
PJ
.
The biology of recent thymic emigrants
.
Annu Rev Immunol
.
2013
;
31
:
31
-
50
.
17.
Collison
LW
,
Vignali
DA
.
In vitro Treg suppression assays
.
Methods Mol Biol
.
2011
;
707
:
21
-
37
.
18.
Crawford
A
,
Angelosanto
JM
,
Kao
C
, et al
.
Molecular and transcriptional basis of CD4(+) T cell dysfunction during chronic infection
.
Immunity
.
2014
;
40
(
2
):
289
-
302
.
19.
Gruarin
P
,
Maglie
S
,
De Simone
M
, et al
.
Eomesodermin controls a unique differentiation program in human IL-10 and IFN-γ coproducing regulatory T cells
.
Eur J Immunol
.
2019
;
49
(
1
):
96
-
111
.
20.
Vignali
DA
,
Collison
LW
,
Workman
CJ
.
How regulatory T cells work
.
Nat Rev Immunol
.
2008
;
8
(
7
):
523
-
532
.
21.
Yuan
X
,
Ferrari
D
,
Mills
T
, et al
.
Editorial: purinergic signaling and inflammation
.
Front Immunol
.
2021
;
12
:
699069
.
22.
Freeborn
RA
,
Strubbe
S
,
Roncarolo
MG
.
Type 1 regulatory T cell-mediated tolerance in health and disease
.
Front Immunol
.
2022
;
13
:
1032575
.
23.
Roncarolo
MG
,
Gregori
S
,
Bacchetta
R
,
Battaglia
M
,
Gagliani
N
.
The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases
.
Immunity
.
2018
;
49
(
6
):
1004
-
1019
.
24.
Zhang
P
,
Lee
JS
,
Gartlan
KH
, et al
.
Eomesodermin promotes the development of type 1 regulatory T (T(R)1) cells
.
Sci Immunol
.
2017
;
2
(
10
):
eaah7152
.
25.
Bono
MR
,
Fernandez
D
,
Flores-Santibanez
F
,
Rosemblatt
M
,
Sauma
D
.
CD73 and CD39 ectonucleotidases in T cell differentiation: beyond immunosuppression
.
FEBS Lett
.
2015
;
589
(
22
):
3454
-
3460
.
26.
Hwang
SR
,
Saliba
AN
,
Wolanskyj-Spinner
AP
.
Immunotherapy-associated autoimmune hemolytic anemia
.
Hematol Oncol Clin North Am
.
2022
;
36
(
2
):
365
-
380
.
27.
Barcellini
W
,
Fattizzo
B
.
Diagnosis and management of autoimmune hemolytic anemias
.
J Clin Med
.
2022
;
11
(
20
):
6029
.
28.
Mulder
FVM
,
Evers
D
,
de Haas
M
, et al
.
Severe autoimmune hemolytic anemia; epidemiology, clinical management, outcomes and knowledge gaps
.
Front Immunol
.
2023
;
14
:
1228142
.
29.
Tranekaer
S
,
Hansen
DL
,
Frederiksen
H
.
Epidemiology of secondary warm autoimmune haemolytic anaemia-a systematic review and meta-analysis
.
J Clin Med
.
2021
;
10
(
6
):
1244
.
30.
Ciudad
M
,
Ouandji
S
,
Lamarthee
B
, et al
.
Regulatory T-cell dysfunctions are associated with increase in tumor necrosis factor alpha in autoimmune hemolytic anemia and participate in Th17 polarization
.
Haematologica
.
2024
;
109
(
2
):
444
-
457
.
31.
Michalak
SS
,
Olewicz-Gawlik
A
,
Rupa-Matysek
J
,
Wolny-Rokicka
E
,
Nowakowska
E
,
Gil
L
.
Autoimmune hemolytic anemia: current knowledge and perspectives
.
Immun Ageing
.
2020
;
17
(
1
):
38
.
32.
Richard
ML
,
Gilkeson
G
.
Mouse models of lupus: what they tell us and what they don't
.
Lupus Sci Med
.
2018
;
5
(
1
):
e000199
.
33.
Grant
CR
,
Liberal
R
,
Mieli-Vergani
G
,
Vergani
D
,
Longhi
MS
.
Regulatory T-cells in autoimmune diseases: challenges, controversies and--yet--unanswered questions
.
Autoimmun Rev
.
2015
;
14
(
2
):
105
-
116
.
34.
Noack
M
,
Miossec
P
.
Th17 and regulatory T cell balance in autoimmune and inflammatory diseases
.
Autoimmun Rev
.
2014
;
13
(
6
):
668
-
677
.
35.
Xu
L
,
Zhang
T
,
Liu
Z
,
Li
Q
,
Xu
Z
,
Ren
T
.
Critical role of Th17 cells in development of autoimmune hemolytic anemia
.
Exp Hematol
.
2012
;
40
(
12
):
994
-
1004.e4
.
36.
Fourcade
J
,
Sun
Z
,
Benallaoua
M
, et al
.
Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients
.
J Exp Med
.
2010
;
207
(
10
):
2175
-
2186
.
37.
Huang
RY
,
Francois
A
,
McGray
AR
,
Miliotto
A
,
Odunsi
K
.
Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer
.
Oncoimmunology
.
2017
;
6
(
1
):
e1249561
.
38.
Dang
EV
,
Barbi
J
,
Yang
HY
, et al
.
Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
.
Cell
.
2011
;
146
(
5
):
772
-
784
.
39.
Magni
G
,
Ceruti
S
.
Adenosine signaling in autoimmune disorders
.
Pharmaceuticals (Basel)
.
2020
;
13
(
9
):
260
.
40.
Richards
AL
,
Kapp
LM
,
Wang
X
,
Howie
HL
,
Hudson
KE
.
Regulatory T cells are dispensable for tolerance to RBC antigens
.
Front Immunol
.
2016
;
7
:
348
.
41.
Park
JH
,
Lee
KH
,
Jeon
B
, et al
.
Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome: a systematic review
.
Autoimmun Rev
.
2020
;
19
(
6
):
102526
.
42.
Wildin
RS
,
Smyk-Pearson
S
,
Filipovich
AH
.
Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome
.
J Med Genet
.
2002
;
39
(
8
):
537
-
545
.
43.
Hall
AM
,
Vickers
MA
,
Barker
RN
,
Erwig
LP
.
Helper T cells point the way to specific immunotherapy for autoimmune disease
.
Cardiovasc Hematol Disord Drug Targets
.
2009
;
9
(
3
):
159
-
166
.
44.
Passerini
L
,
Di Nunzio
S
,
Gregori
S
, et al
.
Functional type 1 regulatory T cells develop regardless of FOXP3 mutations in patients with IPEX syndrome
.
Eur J Immunol
.
2011
;
41
(
4
):
1120
-
1131
.
45.
Ahmad
E
,
Elgohary
T
,
Ibrahim
H
.
Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia
.
J Investig Allergol Clin Immunol
.
2011
;
21
(
4
):
297
-
304
.
46.
Takenaka
MC
,
Robson
S
,
Quintana
FJ
.
Regulation of the T cell response by CD39
.
Trends Immunol
.
2016
;
37
(
7
):
427
-
439
.
47.
Wang
J
,
Zhao
X
,
Wan
YY
.
Intricacies of TGF-beta signaling in Treg and Th17 cell biology
.
Cell Mol Immunol
.
2023
;
20
(
9
):
1002
-
1022
.
48.
Zhou
X
,
Bailey-Bucktrout
SL
,
Jeker
LT
, et al
.
Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo
.
Nat Immunol
.
2009
;
10
(
9
):
1000
-
1007
.
49.
Zhuang
J
,
Du
J
,
Guo
X
, et al
.
Clinical diagnosis and treatment recommendations for immune checkpoint inhibitor-related hematological adverse events
.
Thorac Cancer
.
2020
;
11
(
3
):
799
-
804
.
You do not currently have access to this content.
Sign in via your Institution