• Fitusiran is an investigational siRNA reducing antithrombin expression that is under clinical evaluation for the treatment of hemophilia.

  • Using inducible FX–deficient mice, we demonstrate that fitusiran has the potential to improve hemostasis in FX deficiency.

Abstract

Factor X (FX) deficiency is a rare bleeding disorder manifesting a bleeding tendency caused by low FX activity levels. We aim to explore the use of fitusiran (an investigational small interfering RNA that silences antithrombin expression) to increase thrombin generation and the in vivo hemostatic potential under conditions of FX deficiency. We therefore developed a novel model of inducible FX deficiency, generating mice expressing <1% FX activity and antigen (f10low mice). Compared with control f10WT mice, f10low mice had sixfold and fourfold prolonged clotting times in prothrombin time and activated partial prothrombin time assays, respectively (P < .001). Thrombin generation was severely reduced, irrespective of whether tissue factor or factor XIa was used as an initiator. In vivo analysis revealed near-absent thrombus formation in a laser-induced vessel injury model. Furthermore, in 2 distinct bleeding models, f10low mice displayed an increased bleeding tendency compared with f10WT mice. In the tail-clip assay, blood loss was increased from 12 ± 16 μL to 590 ± 335 μL (P < .0001). In the saphenous vein puncture (SVP) model, the number of clots generated was reduced from 19 ± 5 clots every 30 minutes for f10WT mice to 2 ± 2 clots every 30 minutes (P < .0001) for f10low mice. In both models, bleeding was corrected upon infusion of purified FX. Treatment of f10low mice with fitusiran (2 × 10 mg/kg at 1 week interval) resulted in 17 ± 6% residual antithrombin activity and increased thrombin generation (fourfold and twofold to threefold increase in endogenous thrombin potential and thrombin peak, respectively). In the SVP model, the number of clots was increased to 8 ± 6 clots every 30 minutes (P = .0029). Altogether, we demonstrate that reduction in antithrombin levels is associated with improved hemostatic activity under conditions of FX deficiency.

1.
Versteeg
HH
,
Heemskerk
JW
,
Levi
M
,
Reitsma
PH
.
New fundamentals in hemostasis
.
Physiol Rev
.
2013
;
93
(
1
):
327
-
358
.
2.
Uprichard
J
,
Perry
DJ
.
Factor X deficiency
.
Blood Rev
.
2002
;
16
(
2
):
97
-
110
.
3.
Menegatti
M
,
Peyvandi
F
.
Factor X deficiency
.
Semin Thromb Hemost
.
2009
;
35
(
4
):
407
-
415
.
4.
Peyvandi
F
,
Palla
R
,
Menegatti
M
, et al
.
Coagulation factor activity and clinical bleeding severity in rare bleeding disorders: results from the European Network of Rare Bleeding Disorders
.
J Thromb Haemost
.
2012
;
10
(
4
):
615
-
621
.
5.
Peyvandi
F
,
Mannucci
PM
,
Lak
M
, et al
.
Congenital factor X deficiency: spectrum of bleeding symptoms in 32 Iranian patients
.
Br J Haematol
.
1998
;
102
(
2
):
626
-
628
.
6.
Brown
DL
,
Kouides
PA
.
Diagnosis and treatment of inherited factor X deficiency
.
Haemophilia
.
2008
;
14
(
6
):
1176
-
1182
.
7.
Payne
J
,
Batsuli
G
,
Leavitt
AD
,
Mathias
M
,
McGuinn
CE
.
A review of the pharmacokinetics, efficacy and safety of high-purity factor X for the prophylactic treatment of hereditary factor X deficiency
.
Haemophilia
.
2022
;
28
(
4
):
523
-
531
.
8.
Pasi
KJ
,
Rangarajan
S
,
Georgiev
P
, et al
.
Targeting of antithrombin in hemophilia A or B with RNAi therapy
.
N Engl J Med
.
2017
;
377
(
9
):
819
-
828
.
9.
Srivastava
A
,
Rangarajan
S
,
Kavakli
K
, et al
.
Fitusiran prophylaxis in people with severe hemophilia A or hemophilia B without inhibitors (ATLAS-A/B): a multicenter, open-label, randomized, phase 3 trial
.
Lancet Haematol
.
2023
;
10
(
5
):
e322
-
e332
.
10.
Young
G
,
Srivastava
A
,
Kavakli
K
, et al
.
Efficacy and safety of fitusiran prophylaxis in people with hemophilia A or hemophilia B with inhibitors (ATLAS-INH): a multicenter, open-label, randomized phase 3 trial
.
Lancet
.
2023
;
401
(
10386
):
1427
-
1437
.
11.
Young
G
,
Lenting
PJ
,
Croteau
SE
,
Nolan
B
,
Srivastava
A
.
Antithrombin lowering in hemophilia: a closer look at fitusiran
.
Res Pract Thromb Haemost
.
2023
;
7
(
4
):
100179
.
12.
Kenet
G
,
Nolan
B
,
Zulfikar
OB
, et al
.
Fitusiran prophylaxis in people with hemophilia A or B who switched from prior BPA/CFC prophylaxis (ATLAS-PPX)
.
Blood
.
2024
;
143
(
22
):
2256
-
2269
.
13.
Rohlmann
A
,
Gotthardt
M
,
Hammer
RE
,
Herz
J
.
Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants
.
J Clin Invest
.
1998
;
101
(
3
):
689
-
695
.
14.
Graf
C
,
Wilgenbus
P
,
Pagel
S
, et al
.
Myeloid cell-synthesized coagulation factor X dampens antitumor immunity
.
Sci Immunol
.
2019
;
4
(
39
):
eaaw8405
.
15.
Sehgal
A
,
Barros
S
,
Ivanciu
L
, et al
.
An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia
.
Nat Med
.
2015
;
21
(
5
):
492
-
497
.
16.
Hemker
HC
,
Giesen
P
,
AlDieri
R
, et al
.
The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability
.
Pathophysiol Haemost Thromb
.
2002
;
32
(
5-6
):
249
-
253
.
17.
Dubois
C
,
Panicot-Dubois
L
,
Gainor
JF
,
Furie
BC
,
Furie
B
.
Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model
.
J Clin Invest
.
2007
;
117
(
4
):
953
-
960
.
18.
Muczynski
V
,
Casari
C
,
Moreau
F
, et al
.
A factor VIII-nanobody fusion protein forming an ultrastable complex with VWF: effect on clearance and antibody formation
.
Blood
.
2018
;
132
(
11
):
1193
-
1197
.
19.
Pastoft
AE
,
Lykkesfeldt
J
,
Ezban
M
,
Tranholm
M
,
Whinna
HC
,
Lauritzen
B
.
A sensitive venous bleeding model in hemophilia A mice: effects of two recombinant FVIII products (N8 and Advate((R)))
.
Haemophilia
.
2012
;
18
(
5
):
782
-
788
.
20.
Dewerchin
M
,
Liang
Z
,
Moons
L
, et al
.
Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice
.
Thromb Haemost
.
2000
;
83
(
2
):
185
-
190
.
21.
Tai
SJ
,
Herzog
RW
,
Margaritis
P
, et al
.
A viable mouse model of factor X deficiency provides evidence for maternal transfer of factor X
.
J Thromb Haemost
.
2008
;
6
(
2
):
339
-
345
.
22.
Cohen
CT
,
Turner
NA
,
Moake
JL
.
Production and control of coagulation proteins for factor X activation in human endothelial cells and fibroblasts
.
Sci Rep
.
2020
;
10
(
1
):
2005
.
23.
Kuhn
R
,
Schwenk
F
,
Aguet
M
,
Rajewsky
K
.
Inducible gene targeting in mice
.
Science
.
1995
;
269
(
5229
):
1427
-
1429
.
24.
Gui
T
,
Lin
HF
,
Jin
DY
, et al
.
Circulating and binding characteristics of wild-type factor IX and certain Gla domain mutants in vivo
.
Blood
.
2002
;
100
(
1
):
153
-
158
.
25.
Cherny
I
,
Hasin
P
,
Philosoph
LK
,
Shahal-Zimra
Y
,
Gurion
R
,
Rabizadeh
E
.
Presence and activity of fibrinogen like protein 2 in platelets
.
PLoS One
.
2023
;
18
(
5
):
e0285735
.
26.
Yanaba
K
,
Asano
Y
,
Noda
S
, et al
.
Increased circulating fibrinogen-like protein 2 in patients with systemic sclerosis
.
Clin Rheumatol
.
2013
;
32
(
1
):
43
-
47
.
27.
Van Cott
EM
,
Orlando
C
,
Moore
GW
, et al
.
Recommendations for clinical laboratory testing for antithrombin deficiency; communication from the SSC of the ISTH
.
J Thromb Haemost
.
2020
;
18
(
1
):
17
-
22
.
28.
Pasi
KJ
,
Lissitchkov
T
,
Mamonov
V
, et al
.
Targeting of antithrombin in hemophilia A or B with investigational siRNA therapeutic fitusiran-results of the phase 1 inhibitor cohort
.
J Thromb Haemost
.
2021
;
19
(
6
):
1436
-
1446
.
You do not currently have access to this content.
Sign in via your Institution