Abstract

Coagulation factor VIII (FVIII) is essential for hemostasis. After activation, it combines with activated FIX (FIXa) on anionic membranes to form the intrinsic Xase enzyme complex, responsible for activating FX in the rate-limiting step of sustained coagulation. Hemophilia A (HA) and hemophilia B are due to inherited deficiencies in the activity of FVIII and FIX, respectively. Treatment of HA over the last decade has benefited from an improved understanding of FVIII biology, including its secretion pathway, its interaction with von Willebrand factor in circulation, the biochemical nature of its FIXa cofactor activity, the regulation of activated FVIII by inactivation pathways, and its surprising immunogenicity. This has facilitated biotechnology innovations with first-in-class examples of several new therapeutic modalities recently receiving regulatory approval for HA, including FVIII-mimetic bispecific antibodies and recombinant adeno-associated viral (rAAV) vector–based gene therapy. Biological insights into FVIII also guide the development and use of gain-of-function FVIII variants aimed at addressing the limitations of first-generation rAAV vectors for HA. Several gain-of-function FVIII variants designed to have improved secretion are currently incorporated in second-generation rAAV vectors and have recently entered clinical trials. Continued mutually reinforcing advancements in the understanding of FVIII biology and treatments for HA are necessary to achieve the ultimate goal of hemophilia therapy: normalizing hemostasis and optimizing well-being with minimal treatment burden for all patients worldwide.

1.
Lenting
PJ
,
Denis
CV
,
Christophe
OD
.
Emicizumab, a bispecific antibody recognizing coagulation factors IX and X: how does it actually compare to factor VIII?
.
Blood
.
2017
;
130
(
23
):
2463
-
2468
.
2.
Arruda
VR
,
Doshi
BS
,
Samelson-Jones
BJ
.
Novel approaches to hemophilia therapy: successes and challenges
.
Blood
.
2017
;
130
(
21
):
2251
-
2256
.
3.
Pierce
GF
,
Fong
S
,
Long
BR
,
Kaczmarek
R
.
Deciphering conundrums of AAV liver-directed gene therapy: focus on hemophilia
.
J Thromb Haemostasis
.
2024
;
22
(
5
):
1263
-
1289
.
4.
Samelson-Jones
BJ
,
George
LA
.
Adeno-associated virus gene therapy for hemophilia
.
Annu Rev Med
.
2023
;
74(1)
:
231
-
247
.
5.
Samelson-Jones
BJ
,
Arruda
VR
.
Protein-engineered coagulation factors for hemophilia gene therapy
.
Mol Ther Methods Clin Dev
.
2019
;
12
:
184
-
201
.
6.
Bos
MHA
,
van Diest
RE
,
Monroe
DM
.
Blood coagulation factor IX: structural insights impacting hemophilia B therapy
.
Blood
.
2024
;
144
(
21
):
2198
-
2210
.
7.
Fahs
SA
,
Hille
MT
,
Shi
Q
,
Weiler
H
,
Montgomery
RR
.
A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII
.
Blood
.
2014
;
123
(
24
):
3706
-
3713
.
8.
Everett
LA
,
Cleuren
AC
,
Khoriaty
RN
,
Ginsburg
D
.
Murine coagulation factor VIII is synthesized in endothelial cells
.
Blood
.
2014
;
123
(
24
):
3697
-
3705
.
9.
Pipe
SW
,
Morris
JA
,
Shah
J
,
Kaufman
RJ
.
Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin
.
J Biol Chem
.
1998
;
273
(
14
):
8537
-
8544
.
10.
Grootjans
J
,
Kaser
A
,
Kaufman
RJ
,
Blumberg
RS
.
The unfolded protein response in immunity and inflammation
.
Nat Rev Immunol
.
2016
;
16
(
8
):
469
-
484
.
11.
Malhotra
JD
,
Miao
H
,
Zhang
K
, et al
.
Antioxidants reduce endoplasmic reticulum stress and improve protein secretion
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
47
):
18525
-
18530
.
12.
Lange
AM
,
Altynova
ES
,
Nguyen
GN
,
Sabatino
DE
.
Overexpression of factor VIII after AAV delivery is transiently associated with cellular stress in hemophilia A mice
.
Mol Ther Methods Clin Dev
.
2016
;
3
:
16064
.
13.
Zolotukhin
I
,
Markusic
DM
,
Palaschak
B
,
Hoffman
BE
,
Srikanthan
MA
,
Herzog
RW
.
Potential for cellular stress response to hepatic factor VIII expression from AAV vector
.
Mol Ther Methods Clin Dev
.
2016
;
3
:
16063
.
14.
Greene
TK
,
Lyde
RB
,
Bailey
SC
, et al
.
Apoptotic effects of platelet factor VIII on megakaryopoiesis: implications for a modified human FVIII for platelet-based gene therapy
.
J Thromb Haemost
.
2014
;
12
(
12
):
2102
-
2112
.
15.
Sternberg
AR
,
Martos-Rus
C
,
Davidson
RJ
,
Liu
X
,
George
LA
.
Pre-clinical evaluation of an enhanced-function factor VIII variant for durable hemophilia A gene therapy in male mice
.
Nat Commun
.
2024
;
15
:
7193
.
16.
Pittman
DD
,
Marquette
KA
,
Kaufman
RJ
.
Role of the B domain for factor VIII and factor V expression and function
.
Blood
.
1994
;
84
(
12
):
4214
-
4225
.
17.
Poothong
J
,
Pottekat
A
,
Siirin
M
, et al
.
Factor VIII exhibits chaperone-dependent and glucose-regulated reversible amyloid formation in the endoplasmic reticulum
.
Blood
.
2020
;
135
(
21
):
1899
-
1911
.
18.
Marquette
KA
,
Pittman
DD
,
Kaufman
RJ
.
A 110-amino acid region within the A1-domain of coagulation factor VIII inhibits secretion from mammalian cells
.
J Biol Chem
.
1995
;
270
(
17
):
10297
-
10303
.
19.
Kapelanski-Lamoureux
A
,
Chen
Z
,
Gao
ZH
, et al
.
Ectopic clotting factor VIII expression and misfolding in hepatocytes as a cause for hepatocellular carcinoma
.
Mol Ther
.
2022
;
30
(
12
):
3542
-
3551
.
20.
Zhang
B
,
Cunningham
MA
,
Nichols
WC
, et al
.
Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex
.
Nat Genet
.
2003
;
34
(
2
):
220
-
225
.
21.
Lind
P
,
Larsson
K
,
Spira
J
, et al
.
Novel forms of B-domain deleted recombinant factor VIII molecules. Construction and biochemical characterization
.
Eur J Biochem
.
1995
;
232
(
1
):
19
-
27
.
22.
Pittman
DD
,
Alderman
EM
,
Tomkinson
KN
,
Wang
JH
,
Giles
AR
,
Kaufman
RJ
.
Biochemical, immunological, and in vivo functional characterization of B-domain-deleted FVIII
.
Blood
.
1993
;
81
(
11
):
2925
-
2935
.
23.
Andersson
LO
,
Forsman
N
,
Huang
K
, et al
.
Isolation and characterization of human factor VIII: molecular forms in commercial factor VIII concentrate, cryoprecipitate and plasma
.
Proc Natl Acad Sci U S A
.
1986
;
83
(
9
):
2979
-
2983
.
24.
Pipe
SW
.
Functional roles of the factor VIII B domain
.
Haemophilia
.
2009
;
15
(
6
):
1187
-
1196
.
25.
Qu
J
,
Ma
C
,
Xu
XQ
, et al
.
Comparative glycosylation mapping of plasma-derived and recombinant human factor VIII
.
PLoS One
.
2020
;
15
(
5
):
e0233576
.
26.
Canis
K
,
Anzengruber
J
,
Garenaux
E
, et al
.
In-depth comparison of N-glycosylation of human plasma-derived factor VIII and different recombinant products: from structure to clinical implications
.
J Thromb Haemost
.
2018
;
16
(
8
):
1592
-
1603
.
27.
Moussalli
M
,
Pipe
SW
,
Hauri
HP
,
Nichols
WC
,
Ginsburg
D
,
Kaufman
RJ
.
Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII
.
J Biol Chem
.
1999
;
274
(
46
):
32539
-
32542
.
28.
Zhang
Y
,
Liu
Z
,
Zhang
B
.
Separate roles of LMAN1 and MCFD2 in ER-to-Golgi trafficking of FV and FVIII
.
Blood Adv
.
2023
;
7
(
7
):
1286
-
1296
.
29.
Miao
HZ
,
Sirachainan
N
,
Palmer
L
, et al
.
Bioengineering of coagulation factor VIII for improved secretion
.
Blood
.
2004
;
103
(
9
):
3412
-
3419
.
30.
Cerullo
V
,
Seiler
MP
,
Mane
V
, et al
.
Correction of murine hemophilia A and immunological differences of factor VIII variants delivered by helper-dependent adenoviral vectors
.
Mol Ther
.
2007
;
15
(
12
):
2080
-
2087
.
31.
McIntosh
J
,
Lenting
PJ
,
Rosales
C
, et al
.
Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant
.
Blood
.
2013
;
121
(
17
):
3335
-
3344
.
32.
Yagi
H
,
Yagi-Utsumi
M
,
Honda
R
, et al
.
Improved secretion of glycoproteins using an N-glycan-restricted passport sequence tag recognized by cargo receptor
.
Nat Commun
.
2020
;
11
(
1
):
1368
.
33.
Chowdary
P
,
Reiss
UM
,
Tuddenham
EG
, et al
.
GO-8: stable expression of factor VIII over 5 years following adeno-associated gene transfer in subjects with hemophilia A using a novel human factor VIII variant [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
3624
.
34.
Siner
JI
,
Samelson-Jones
BJ
,
Crudele
JM
, et al
.
Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models
.
JCI Insight
.
2016
;
1
(
16
):
e89371
.
35.
Nguyen
GN
,
Lindgren
JR
,
Seleme
MC
, et al
.
Altered cleavage of human factor VIII at the B-domain and acidic region 3 interface enhances expression after gene therapy in hemophilia A mice
.
J Thromb Haemost
.
2023
;
21
(
8
):
2101
-
2113
.
36.
Swaroop
M
,
Moussalli
M
,
Pipe
SW
,
Kaufman
RJ
.
Mutagenesis of a potential immunoglobulin-binding protein-binding site enhances secretion of coagulation factor VIII
.
J Biol Chem
.
1997
;
272
(
39
):
24121
-
24124
.
37.
Doering
CB
,
Healey
JF
,
Parker
ET
,
Barrow
RT
,
Lollar
P
.
High level expression of recombinant porcine coagulation factor VIII
.
J Biol Chem
.
2002
;
277
(
41
):
38345
-
38349
.
38.
Doering
CB
,
Healey
JF
,
Parker
ET
,
Barrow
RT
,
Lollar
P
.
Identification of porcine coagulation factor VIII domains responsible for high level expression via enhanced secretion
.
J Biol Chem
.
2004
;
279
(
8
):
6546
-
6552
.
39.
Brown
HC
,
Wright
JF
,
Zhou
S
, et al
.
Bioengineered coagulation factor VIII enables long-term correction of murine hemophilia A following liver-directed adeno-associated viral vector delivery
.
Mol Ther Methods Clin Dev
.
2014
;
1
:
14036
.
40.
Doering
CB
,
Denning
G
,
Dooriss
K
, et al
.
Directed engineering of a high-expression chimeric transgene as a strategy for gene therapy of hemophilia A
.
Mol Ther
.
2009
;
17
(
7
):
1145
-
1154
.
41.
Cao
W
,
Dong
B
,
Horling
F
, et al
.
Minimal essential human factor VIII alterations enhance secretion and gene therapy efficiency
.
Mol Ther Methods Clin Dev
.
2020
;
19
:
486
-
495
.
42.
Zakas
PM
,
Brown
HC
,
Knight
K
, et al
.
Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction
.
Nat Biotechnol
.
2017
;
35
(
1
):
35
-
37
.
43.
Lenting
PJ
,
Van Mourik
JA
,
Mertens
K
.
The life cycle of coagulation factor VIII in view of its structure and function
.
Blood
.
1998
;
92
(
11
):
3983
-
3996
.
44.
Pipe
SW
,
Montgomery
RR
,
Pratt
KP
,
Lenting
PJ
,
Lillicrap
D
.
Life in the shadow of a dominant partner: the FVIII-VWF association and its clinical implications for hemophilia A
.
Blood
.
2016
;
128
(
16
):
2007
-
2016
.
45.
Lenting
PJ
,
Denis
CV
,
Christophe
OD
.
How unique structural adaptations support and coordinate the complex function of von Willebrand factor
.
Blood
.
2024
;
144
(
21
):
2174
-
2184
.
46.
von Drygalski
A
,
Chowdary
P
,
Kulkarni
R
, et al
.
Efanesoctocog alfa prophylaxis for patients with severe hemophilia A
.
N Engl J Med
.
2023
;
388
(
4
):
310
-
318
.
47.
Koppelman
SJ
,
van Hoeij
M
,
Vink
T
, et al
.
Requirements of von Willebrand factor to protect factor VIII from inactivation by activated protein C
.
Blood
.
1996
;
87
(
6
):
2292
-
2300
.
48.
Hill-Eubanks
DC
,
Parker
CG
,
Lollar
P
.
Differential proteolytic activation of factor VIII-von Willebrand factor complex by thrombin
.
Proc Natl Acad Sci U S A
.
1989
;
86
(
17
):
6508
-
6512
.
49.
Lollar
P
,
Knutson
G
,
Fass
D
.
Stabilisation of thrombin activated porcine factor VIII:C by factor IXa and phospholipid
.
Blood
.
1984
;
63
(
6
):
1303
-
1308
.
50.
Fay
PJ
.
Regulation of factor VIIIa in the intrinsic factor Xase
.
Thromb Haemost
.
1999
;
82
(
2
):
193
-
200
.
51.
Childers
KC
,
Peters
SC
,
Lollar
P
,
Spencer
HT
,
Doering
CB
,
Spiegel
PC
.
SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa
.
Blood Adv
.
2022
;
6
(
11
):
3240
-
3254
.
52.
Freato
N
,
Ebberink
E
,
van Galen
J
, et al
.
Factor VIII-driven changes in activated factor IX explored by hydrogen-deuterium exchange mass spectrometry
.
Blood
.
2020
;
136
(
23
):
2703
-
2714
.
53.
Fay
PJ
.
Activation of factor VIII and mechanisms of cofactor action
.
Blood Rev
.
2004
;
18(1)
:
1
-
15
.
54.
Fay
PJ
,
Koshibu
K
.
The A2 subunit of factor VIIIa modulates the active site of factor IXa
.
J Biol Chem
.
1998
;
273
(
30
):
19049
-
19054
.
55.
Lenting
PJ
,
Christophe
OD
,
Maat
H
,
Rees
DJG
,
Mertens
K
.
Calcium binding to the first epidermal growth factor-like domain of human blood coagulation factor IX promotes enzyme activity and factor VIII light chain binding
.
J Biol Chem
.
1996
;
271
(
41
):
25332
-
25337
.
56.
Kitazawa
T
,
Igawa
T
,
Sampei
Z
, et al
.
A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model
.
Nat Med
.
2012
;
18
(
10
):
1570
-
1574
.
57.
Kitazawa
T
,
Esaki
K
,
Tachibana
T
, et al
.
Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens
.
Thromb Haemost
.
2017
;
117
(
7
):
1348
-
1357
.
58.
Fay
PJ
,
Mastri
M
,
Koszelak
ME
,
Wakabayashi
H
.
Cleavage of factor VIII heavy chain is required for the functional interaction of a2 subunit with factor IXa
.
J Biol Chem
.
2001
;
276
(
15
):
12434
-
12439
.
59.
Nogami
K
,
Lapan
KA
,
Zhou
Q
,
Wakabayashi
H
,
Fay
PJ
.
Identification of a factor Xa-interactive site within residues 337-372 of the factor VIII heavy chain
.
J Biol Chem
.
2004
;
279
(
16
):
15763
-
15771
.
60.
Takeyama
M
,
Nogami
K
,
Sasai
K
,
Furukawa
S
,
Shima
M
.
Contribution of factor VIII A2 domain residues 400-409 to a factor X-interactive site in the factor Xase complex
.
Thromb Haemost
.
2018
;
118
(
5
):
830
-
841
.
61.
Takeyama
M
,
Wakabayashi
H
,
Fay
PJ
.
Factor VIII light chain contains a binding site for factor X that contributes to the catalytic efficiency of factor Xase
.
Biochemistry
.
2012
;
51
(
3
):
820
-
828
.
62.
Nogami
K
,
Shima
M
,
Hosokawa
K
, et al
.
Role of factor VIII C2 domain in factor VIII binding to factor Xa
.
J Biol Chem
.
1999
;
274
(
43
):
31000
-
31007
.
63.
Zwaal
RF
,
Comfurius
P
,
Bevers
EM
.
Lipid-protein interactions in blood coagulation
.
Biochim Biophys Acta
.
1998
;
1376
(
3
):
433
-
453
.
64.
Østergaard
H
,
Lund
J
,
Greisen
PJ
, et al
.
A factor VIIIa-mimetic bispecific antibody, Mim8, ameliorates bleeding upon severe vascular challenge in hemophilia A mice
.
Blood
.
2021
;
138
(
14
):
1258
-
1268
.
65.
Selvaraj
SR
,
Scheller
AN
,
Miao
HZ
,
Kaufman
RJ
,
Pipe
SW
.
Bioengineering of coagulation factor VIII for efficient expression through elimination of a dispensable disulfide loop
.
J Thromb Haemost
.
2012
;
10
(
1
):
107
-
115
.
66.
Mashausi
DS
,
Roy
D
,
Mangukiya
HB
, et al
.
A high efficient FVIII variant corrects bleeding in hemophilia A mouse model
.
Biochem Biophys Res Commun
.
2022
;
637
:
358
-
364
.
67.
Nakajima
Y
,
Takeyama
M
,
Oda
A
,
Shimonishi
N
,
Nogami
K
.
Factor VIII mutated with Lys1813Ala within the factor IXa-binding region enhances intrinsic coagulation potential
.
Blood Adv
.
2023
;
7
(
8
):
1436
-
1445
.
68.
Firrman
J
,
Wang
Q
,
Wu
W
, et al
.
Identification of key coagulation activity determining elements in canine factor VIII
.
Mol Ther Methods Clin Dev
.
2020
;
17
:
328
-
336
.
69.
Pipe
SW
,
Kaufman
RJ
.
Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
22
):
11851
-
11856
.
70.
Gale
AJ
,
Pellequer
JL
.
An engineered interdomain disulfide bond stabilizes human blood coagulation factor VIIIa
.
J Thromb Haemost
.
2003
;
1
(
9
):
1966
-
1971
.
71.
Leong
L
,
Sim
D
,
Patel
C
, et al
.
Noncovalent stabilization of the factor VIII A2 domain enhances efficacy in hemophilia A mouse vascular injury models
.
Blood
.
2015
;
125
(
2
):
392
-
398
.
72.
Wilhelm
AR
,
Parsons
NA
,
Samelson-Jones
BJ
, et al
.
Activated protein C has a regulatory role in factor VIII function
.
Blood
.
2021
;
137
(
18
):
2532
-
2543
.
73.
Kristensen
LH
,
Olsen
OH
,
Blouse
GE
,
Brandstetter
H
.
Releasing the brakes in coagulation Factor IXa by co-operative maturation of the substrate-binding site
.
Biochem J
.
2016
;
473
(
15
):
2395
-
2411
.
74.
Kolyadko
VN
,
Layzer
JM
,
Perry
K
,
Sullenger
BA
,
Krishnaswamy
S
.
An RNA aptamer exploits exosite-dependent allostery to achieve specific inhibition of coagulation factor IXa
.
Proc Natl Acad Sci U S A
.
2024
;
121
(
29
):
e2401136121
.
75.
Minami
H
,
Nogami
K
,
Soeda
T
,
Kitazawa
T
,
Hattori
K
,
Shima
M
.
The factor VIII heavy chain improves emicizumab-tenase assembly to enhance the factor VIII-mimicking cofactor activity
.
Thromb Res
.
2018
;
166
:
77
-
79
.
76.
Basavaraj
MG
,
Krishnaswamy
S
.
Exosite binding drives substrate affinity for the activation of coagulation factor X by the intrinsic Xase complex
.
J Biol Chem
.
2020
;
295
(
45
):
15198
-
15207
.
77.
Spaargaren
J
,
Giesen
PL
,
Janssen
MP
,
Voorberg
J
,
Willems
GM
,
van Mourik
JA
.
Binding of blood coagulation factor VIII and its light chain to phosphatidylserine/phosphatidylcholine bilayers as measured by ellipsometry
.
Biochem J
.
1995
;
310
(
Pt 2
):
539
-
545
.
78.
Mertens
K
,
Cupers
R
,
Van Wijngaarden
A
,
Bertina
RM
.
Binding of human blood-coagulation factors IXa and X to phospholipid membranes
.
Biochem J
.
1984
;
223
(
3
):
599
-
605
.
79.
Gilbert
GE
,
Arena
AA
.
Activation of the factor VIIIa-factor IXa enzyme complex of blood coagulation by membranes containing phosphatidyl-L-serine
.
J Biol Chem
.
1996
;
271
(
19
):
11120
-
11125
.
80.
Morris
J
,
Parsons N, Sternberg
A
,
Novak
N
,
Davidson
R
,
George
L
.
OC 73.5 Delineating the role of physiologic ligands on FVIIIa inactivation
.
RPTH
.
2023
;
7(suppl 2)
:
100338
.
81.
Lollar
P
,
Parker
ET
.
Structural basis for the decreased procoagulant activity of human factor VIII compared to the porcine homolog
.
J Biol Chem
.
1991
;
266
(
19
):
12481
-
12486
.
82.
Pipe
SW
,
Saenko
EL
,
Eickhorst
AN
,
Kemball-Cook
G
,
Kaufman
RJ
.
Hemophilia A mutations associated with 1-stage/2-stage activity discrepancy disrupt protein-protein interactions within the triplicated A domains of thrombin-activated factor VIIIa
.
Blood
.
2001
;
97
(
3
):
685
-
691
.
83.
Fay
PJ
,
Smudzin
TM
,
Walker
FJ
.
Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa: identification of cleavage sites and correlation of proteolysis with cofactor activity
.
J Biol Chem
.
1991
;
266
(
30
):
20139
-
20145
.
84.
Gale
AJ
,
Cramer
TJ
,
Rozenshteyn
D
,
Cruz
JR
.
Detailed mechanisms of the inactivation of factor VIIIa by activated protein C in the presence of its cofactors, protein S and factor V
.
J Biol Chem
.
2008
;
283
(
24
):
16355
-
16362
.
85.
Wakabayashi
H
,
Varfaj
F
,
Deangelis
J
,
Fay
PJ
.
Generation of enhanced stability factor VIII variants by replacement of charged residues at the A2 domain interface
.
Blood
.
2008
;
112
(
7
):
2761
-
2769
.
86.
Wakabayashi
H
,
Griffiths
AE
,
Fay
PJ
.
Combining mutations of charged residues at the A2 domain interface enhances factor VIII stability over single point mutations
.
J Thromb Haemost
.
2009
;
7
(
3
):
438
-
444
.
87.
Nakajima
Y
,
Oda
A
,
Baatartsogt
N
,
Kashiwakura
Y
,
Ohmori
T
,
Nogami
K
.
The combination of Asp519Val/Glu665Val and Lys1813Ala mutations in FVIII markedly increases coagulation potential
.
Blood Adv
.
2024
;
8
(
15
):
3929
-
3940
.
88.
Greene
TK
,
Wang
C
,
Hirsch
JD
, et al
.
In vivo efficacy of platelet-delivered, high specific activity factor VIII variants
.
Blood
.
2010
;
116
(
26
):
6114
-
6122
.
89.
Samelson-Jones
BJ
,
Finn
JD
,
Raffini
LJ
, et al
.
Evolutionary insights into coagulation factor IX Padua and other high-specific-activity variants
.
Blood Adv
.
2021
;
5
(
5
):
1324
-
1332
.
90.
Knight
KA
,
Coyle
CW
,
Radford
CE
, et al
.
Identification of coagulation factor IX variants with enhanced activity through ancestral sequence reconstruction
.
Blood Adv
.
2021
;
5
(
17
):
3333
-
3343
.
91.
Somero
GN
.
The Goldilocks principle: a unifying perspective on biochemical adaptation to abiotic stressors in the sea
.
Ann Rev Mar Sci
.
2022
;
14(1)
:
1
-
23
.
92.
Koster
T
,
Blann
AD
,
Briët
E
,
Vandenbroucke
JP
,
Rosendaal
FR
.
Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis
.
Lancet
.
1995
;
345
(
8943
):
152
-
155
.
93.
Oshinowo
O
,
Copeland
R
,
Sakurai
Y
, et al
.
Significant differences in single-platelet biophysics exist across species but attenuate during clot formation
.
Blood Adv
.
2021
;
5
(
2
):
432
-
437
.
94.
Whelan
SF
,
Hofbauer
CJ
,
Horling
FM
, et al
.
Distinct characteristics of antibody responses against factor VIII in healthy individuals and in different cohorts of hemophilia A patients
.
Blood
.
2013
;
121
(
6
):
1039
-
1048
.
95.
Reding
MT
,
Wu
H
,
Krampf
M
, et al
.
Sensitization of CD4+ T cells to coagulation factor VIII: response in congenital and acquired hemophilia patients and in healthy subjects
.
Thromb Haemost
.
2000
;
84
(
4
):
643
-
652
.
96.
Zerra
PE
,
Cox
C
,
Baldwin
WH
, et al
.
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A
.
Blood
.
2017
;
130
(
23
):
2559
-
2568
.
97.
Kaczmarek
R
,
Pineros
AR
,
Patterson
PE
, et al
.
Factor VIII trafficking to CD4+ T cells shapes its immunogenicity and requires several types of antigen-presenting cells
.
Blood
.
2023
;
142
(
3
):
290
-
305
.
98.
Doshi
BS
,
Rana
J
,
Castaman
G
, et al
.
B cell-activating factor modulates the factor VIII immune response in hemophilia A
.
J Clin Invest
.
2021
;
131
(
8
):
e142906
.
99.
Becker-Gotot
J
,
Meissner
M
,
Kotov
V
, et al
.
Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs
.
J Clin Invest
.
2022
;
132
(
22
):
e159925
.
100.
Healey
JF
,
Lubin
IM
,
Nakai
H
, et al
.
Residues 484-508 contain a major determinant of the inhibitory epitope in the A2 domain of human factor VIII
.
J Biol Chem
.
1995
;
270
(
24
):
14505
-
14509
.
101.
van den Brink
EN
,
Turenhout
EA
,
Bovenschen
N
, et al
.
Multiple VH genes are used to assemble human antibodies directed toward the A3-C1 domains of factor VIII
.
Blood
.
2001
;
97
(
4
):
966
-
972
.
102.
Gilles
JG
,
Arnout
J
,
Vermylen
J
,
Saint-Remy
JM
.
Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction
.
Blood
.
1993
;
82
(
8
):
2452
-
2461
.
103.
Prescott
R
,
Nakai
H
,
Saenko
EL
, et al
.
The inhibitor antibody response is more complex in hemophilia A patients than in most nonhemophiliacs with factor VIII autoantibodies. Recombinate and Kogenate Study Groups
.
Blood
.
1997
;
89
(
10
):
3663
-
3671
.
104.
Meeks
SL
,
Healey
JF
,
Lollar
P
,
Parker
ET
,
Parker
ET
,
Barrow
RT
.
Antihuman factor VIII C2 domain antibodies in hemophilia A mice recognize a functionally complex continuous spectrum of epitopes dominated by inhibitors of factor VIII activation
.
Blood
.
2007
;
110
(
13
):
4234
-
4242
.
105.
Markovitz
RC
,
Healey
JF
,
Parker
ET
,
Meeks
SL
,
Lollar
P
.
The diversity of the immune response to the A2 domain of human factor VIII
.
Blood
.
2013
;
121
(
14
):
2785
-
2795
.
106.
Batsuli
G
,
Deng
W
,
Healey
JF
, et al
.
High-affinity, noninhibitory pathogenic C1 domain antibodies are present in patients with hemophilia A and inhibitors
.
Blood
.
2016
;
128
(
16
):
2055
-
2067
.
107.
Reding
MT
,
Okita
DK
,
Diethelm-Okita
BM
,
Anderson
TA
,
Conti-Fine
BM
.
Human CD4+ T-cell epitope repertoire on the C2 domain of coagulation factor VIII
.
J Thromb Haemost
.
2003
;
1
(
8
):
1777
-
1784
.
108.
Walter
JD
,
Werther
RA
,
Brison
CM
, et al
.
Structure of the factor VIII C2 domain in a ternary complex with 2 inhibitor antibodies reveals classical and nonclassical epitopes
.
Blood
.
2013
;
122
(
26
):
4270
-
4278
.
109.
Spiegel
PC
,
Jacquemin
M
,
Saint-Remy
JM
,
Stoddard
BL
,
Pratt
KP
.
Structure of a factor VIII C2 domain-immunoglobulin G4kappa Fab complex: identification of an inhibitory antibody epitope on the surface of factor VIII
.
Blood
.
2001
;
98
(
1
):
13
-
19
.
110.
Hu
GL
,
Okita
DK
,
Conti-Fine
BM
.
T cell recognition of the A2 domain of coagulation factor VIII in hemophilia patients and healthy subjects
.
J Thromb Haemost
.
2004
;
2
(
11
):
1908
-
1917
.
111.
Coxon
CH
,
Yu
X
,
Beavis
J
, et al
.
Characterisation and application of recombinant FVIII-neutralising antibodies from haemophilia A inhibitor patients
.
Br J Haematol
.
2021
;
193
(
5
):
976
-
987
.
112.
Reding
MT
,
Okita
DK
,
Diethelm-Okita
BM
,
Anderson
TA
,
Conti-Fine
BM
.
Epitope repertoire of human CD4(+) T cells on the A3 domain of coagulation factor VIII
.
J Thromb Haemost
.
2004
;
2
(
8
):
1385
-
1394
.
113.
Jones
TD
,
Phillips
WJ
,
Smith
BJ
, et al
.
Identification and removal of a promiscuous CD4+ T cell epitope from the C1 domain of factor VIII
.
J Thromb Haemost
.
2005
;
3
(
5
):
991
-
1000
.
114.
Ettinger
RA
,
Liberman
JA
,
Gunasekera
D
, et al
.
FVIII proteins with a modified immunodominant T-cell epitope exhibit reduced immunogenicity and normal FVIII activity
.
Blood Adv
.
2018
;
2
(
4
):
309
-
322
.
115.
Moise
L
,
Song
C
,
Martin
WD
,
Tassone
R
,
De Groot
AS
,
Scott
DW
.
Effect of HLA DR epitope de-immunization of factor VIII in vitro and in vivo
.
Clin Immunol
.
2012
;
142
(
3
):
320
-
331
.
116.
Vander Kooi
A
,
Wang
S
,
Fan
MN
, et al
.
Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII
.
Blood Adv
.
2022
;
6
(
14
):
4271
-
4282
.
117.
Samelson-Jones
BJ
,
Arruda
VR
.
Translational potential of immune tolerance induction by AAV liver-directed factor VIII gene therapy for hemophilia A
.
Front Immunol
.
2020
;
11
:
618
.
118.
Valentino
LA
,
Ozelo
MC
,
Herzog
RW
, et al
.
A review of the rationale for gene therapy for hemophilia A with inhibitors: one-shot tolerance and treatment?
.
J Thromb Haemost
.
2023
;
21
(
11
):
3033
-
3044
.
119.
Lundgren
TS
,
Denning
G
,
Stowell
SR
,
Spencer
HT
,
Doering
CB
.
Pharmacokinetic analysis identifies a factor VIII immunogenicity threshold after AAV gene therapy in hemophilia A mice
.
Blood Adv
.
2022
;
6
(
8
):
2628
-
2645
.
120.
Long
BR
,
Robinson
TM
,
Day
JRS
, et al
.
Clinical immunogenicity outcomes from GENEr8-1, a phase 3 study of valoctocogene roxaparvovec, an AAV5-vectored gene therapy for hemophilia A
.
Mol Ther
.
2024
;
32
(
7
):
2052
-
2063
.
121.
Kaczmarek
R
,
Samelson-Jones
BJ
,
Herzog
RW
.
Immune tolerance induction by hepatic gene transfer: first-in-human evidence
.
Mol Ther
.
2024
;
32
(
4
):
863
-
864
.
122.
Skinner
MW
,
Nugent
D
,
Wilton
P
, et al
.
Achieving the unimaginable: health equity in haemophilia
.
Haemophilia
.
2020
;
26
(
1
):
17
-
24
.
You do not currently have access to this content.
Sign in via your Institution