• Donor platelets can be directly genetically modified in plasma and platelet additive solution using mRNA-lipid nanoparticles.

  • mRNA-LNP transfection is scalable to physiological and supraphysiological platelet concentrations, and engineered platelets can be stored.

Abstract

Platelets contribute to a variety of physiological processes, including inflammation, sepsis, and cancer. However, because of their primary role in hemostasis, platelet transfusions are largely restricted to managing thrombocytopenia and bleeding. One way to expand the utility of platelet transfusions would be to genetically engineer donor platelets with new or enhanced functions. We have previously shown that lipid nanoparticles containing mRNA (mRNA-LNP) can be used to genetically modify authentic platelets in a nonclinical crystalloid solution. Currently, platelets collected for transfusion are stored in plasma or in plasma supplemented with platelet additive solution (PAS) at supraphysiological concentrations at room temperature, or at 4°C if intended for use in acute hemorrhage. Here, we describe a new plasma-optimized mRNA-LNP for transfecting platelets directly in plasma and plasma supplemented with PAS that is scalable to physiological and supraphysiological platelet concentrations. Transfecting platelets in clinical solutions with mRNA-LNP does not affect aspects of in vitro physiology, and transfected platelets are storable. The compatibility of this transfection system with current clinical practices could enable future mRNA-LNP–based platelet products and cell therapies.

1.
Stroncek
DF
,
Rebulla
P
.
Platelet transfusions
.
Lancet
.
2007
;
370
(
9585
):
427
-
438
.
2.
van der Meijden
PEJ
,
Heemskerk
JWM
.
Platelet biology and functions: new concepts and clinical perspectives
.
Nat Rev Cardiol
.
2019
;
16
(
3
):
166
-
179
.
3.
Shi
Q
,
Kuether
EL
,
Chen
Y
,
Schroeder
JA
,
Fahs
SA
,
Montgomery
RR
.
Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells
.
Blood
.
2014
;
123
(
3
):
395
-
403
.
4.
Du
LM
,
Nurden
P
,
Nurden
AT
, et al
.
Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A
.
Nat Commun
.
2013
;
4
:
2773
.
5.
Charlesworth
CT
,
Hsu
I
,
Wilkinson
AC
,
Nakauchi
H
.
Immunological barriers to haematopoietic stem cell gene therapy
.
Nat Rev Immunol
.
2022
;
22
(
12
):
719
-
733
.
6.
Leung
J
,
Strong
C
,
Badior
KE
, et al
.
Genetically engineered transfusable platelets using mRNA lipid nanoparticles
.
Sci Adv
.
2023
;
9
(
48
):
eadi0508
.
7.
Leung
J
,
Cau
MF
,
Kastrup
CJ
.
Emerging gene therapies for enhancing the hemostatic potential of platelets
.
Transfusion
.
2021
;
61
(
suppl 1
):
S275
-
S285
.
8.
Weyrich
AS
,
Schwertz
H
,
Kraiss
LW
,
Zimmerman
GA
.
Protein synthesis by platelets: historical and new perspectives
.
J Thromb Haemost
.
2009
;
7
(
2
):
241
-
246
.
9.
Akinc
A
,
Maier
MA
,
Manoharan
M
, et al
.
The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs
.
Nat Nanotechnol
.
2019
;
14
(
12
):
1084
-
1087
.
10.
Polack
FP
,
Thomas
SJ
,
Kitchin
N
, et al
.
Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine
.
N Engl J Med
.
2020
;
383
(
27
):
2603
-
2615
.
11.
Baden
LR
,
El Sahly
HM
,
Essink
B
, et al
.
Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine
.
N Engl J Med
.
2021
;
384
(
5
):
403
-
416
.
12.
Sato
Y
,
Hashiba
K
,
Sasaki
K
,
Maeki
M
,
Tokeshi
M
,
Harashima
H
.
Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo
.
J Control Release
.
2019
;
295
:
140
-
152
.
13.
Chander
N
,
Basha
G
,
Yan Cheng
MH
,
Witzigmann
D
,
Cullis
PR
.
Lipid nanoparticle mRNA systems containing high levels of sphingomyelin engender higher protein expression in hepatic and extra-hepatic tissues
.
Mol Ther Methods Clin Dev
.
2023
;
30
:
235
-
245
.
14.
Walkowiak
B
,
Kralisz
U
,
Michalec
L
, et al
.
Comparison of platelet aggregability and P-selectin surface expression on platelets isolated by different methods
.
Thromb Res
.
2000
;
99
(
5
):
495
-
502
.
15.
Siewiera
K
,
Labieniec-Watala
M
,
Wolska
N
,
Kassassir
H
,
Watala
C
.
Sample preparation as a critical aspect of blood platelet mitochondrial respiration measurements-the impact of platelet activation on mitochondrial respiration
.
Int J Mol Sci
.
2021
;
22
(
17
):
9332
.
16.
Spelmink
SE
,
Jager
ST
,
van de Watering
L
, et al
.
Efficacy and safety of platelet additive solution-E stored platelet concentrates
.
Transfusion
.
2023
;
63
(
12
):
2273
-
2280
.
17.
van der Meer
PF
,
de Korte
D
.
Platelet additive solutions: a review of the latest developments and their clinical implications
.
Transfus Med Hemother
.
2018
;
45
(
2
):
98
-
102
.
18.
Tobian
AA
,
Fuller
AK
,
Uglik
K
, et al
.
The impact of platelet additive solution apheresis platelets on allergic transfusion reactions and corrected count increment (CME)
.
Transfusion
.
2014
;
54
(
6
):
1523
-
1529
. quiz 1522.
19.
Devine
DV
,
Serrano
K
.
The platelet storage lesion
.
Clin Lab Med
.
2010
;
30
(
2
):
475
-
487
.
20.
Strandenes
G
,
Sivertsen
J
,
Bjerkvig
CK
, et al
.
A pilot trial of platelets stored cold versus at room temperature for complex cardiothoracic surgery
.
Anesthesiology
.
2020
;
133
(
6
):
1173
-
1183
.
21.
Center for Biologics Evaluation and Research
. Alternative Procedures for the Manufacture of Cold-Stored Platelets Intended for the Treatment of Active Bleeding when Conventional Platelets Are Not Available or Their Use Is Not Practical.
U.S. Department of Health and Human Services Food and Drug Administration
;
2023
.
22.
Levin
E
,
Culibrk
B
,
Gyongyossy-Issa
MI
, et al
.
Implementation of buffy coat platelet component production: comparison to platelet-rich plasma platelet production
.
Transfusion
.
2008
;
48
(
11
):
2331
-
2337
.
23.
Circular of Information For the Use of Human Blood Components
.
Canadian Blood Services
.
2022
.
24.
Blais-Normandin
I
,
Tordon
B
,
Anani
W
,
Ning
S
. Pathogen-reduced platelets. In:
Khandelwal
A
,
Abe
T
, eds.
Clinical Guide to Transfusion
.
Ottawa
:
Canadian Blood Services
;
2022
. chap 19.
25.
Kulkarni
JA
,
Witzigmann
D
,
Leung
J
, et al
.
Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads
.
Nanoscale
.
2019
;
11
(
18
):
9023
-
9031
.
26.
Kulkarni
JA
,
Cullis
PR
,
van der Meel
R
.
Lipid nanoparticles enabling gene therapies: from concepts to clinical utility
.
Nucleic Acid Ther
.
2018
;
28
(
3
):
146
-
157
.
27.
World Intellectual Property Organization
. Mc3-type lipids and use thereof in the preparation of lipid nanoparticles. In:
Ciufolini
MA
,
Kulkarni
J
,
Kurek
D
,
Saadati
F
,
Tam
AC
,
Witzigmann
, eds.
Patent application WO 2022/246571 A1
.
2022
.
28.
Adams
D
,
Gonzalez-Duarte
A
,
O'Riordan
WD
, et al
.
Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis
.
N Engl J Med
.
2018
;
379
(
1
):
11
-
21
.
29.
Jayaraman
M
,
Ansell
SM
,
Mui
BL
, et al
.
Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo
.
Angew Chem Int Ed Engl
.
2012
;
51
(
34
):
8529
-
8533
.
30.
Cheng
MHY
,
Leung
J
,
Zhang
Y
, et al
.
Induction of bleb structures in lipid nanoparticle formulations of mRNA leads to improved transfection potency
.
Adv Mater
.
2023
;
35
(
31
):
e2303370
.
31.
Hald Albertsen
C
,
Kulkarni
JA
,
Witzigmann
D
,
Lind
M
,
Petersson
K
,
Simonsen
JB
.
The role of lipid components in lipid nanoparticles for vaccines and gene therapy
.
Adv Drug Deliv Rev
.
2022
;
188
:
114416
.
32.
Schoenmaker
L
,
Witzigmann
D
,
Kulkarni
JA
, et al
.
mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
.
Int J Pharm
.
2021
;
601
:
120586
.
33.
Morton
LF
,
Hargreaves
PG
,
Farndale
RW
,
Young
RD
,
Barnes
MJ
.
Integrin alpha 2 beta 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for alpha 2 beta 1-independent platelet reactivity
.
Biochem J
.
1995
;
306
(
Pt 2
):
337
-
344
.
34.
De Simone
I
,
Baaten
C
,
Gibbins
JM
, et al
.
Repeated platelet activation and the potential of previously activated platelets to contribute to thrombus formation
.
J Thromb Haemost
.
2023
;
21
(
5
):
1289
-
1306
.
35.
Dachary-Prigent
J
,
Freyssinet
JM
,
Pasquet
JM
,
Carron
JC
,
Nurden
AT
.
Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups
.
Blood
.
1993
;
81
(
10
):
2554
-
2565
.
36.
Sodergren
AL
,
Ramstrom
S
.
Platelet subpopulations remain despite strong dual agonist stimulation and can be characterised using a novel six-colour flow cytometry protocol
.
Sci Rep
.
2018
;
8
(
1
):
1441
.
37.
Tyagi
T
,
Jain
K
,
Gu
SX
, et al
.
A guide to molecular and functional investigations of platelets to bridge basic and clinical sciences
.
Nat Cardiovasc Res
.
2022
;
1
(
3
):
223
-
237
.
38.
Vadgama
A
,
Boot
J
,
Dark
N
, et al
.
Multiparameter phenotyping of platelets and characterization of the effects of agonists using machine learning
.
Res Pract Thromb Haemost
.
2024
;
8
(
5
):
102523
.
39.
Spurgeon
BEJ
,
Frelinger
AL
.
Comprehensive phenotyping of human platelets by single-cell cytometry
.
Cytometry A
.
2022
;
101
(
4
):
290
-
297
.
40.
Görlinger
K
,
Dirkmann
D
,
Hanke
AA
. Rotational thromboelastometry (ROTEM®). In:
Gonzalez
E
,
Moore
HB
,
Moore
EE
, eds.
Trauma Induced Coagulopathy
.
Springer International Publishing
;
2016
:
267
-
298
.
41.
Zhao
H
,
Devine
DV
.
The missing pieces to the cold-stored platelet puzzle
.
Int J Mol Sci
.
2022
;
23
(
3
):
1100
.
42.
New
HV
,
Berryman
J
,
Bolton-Maggs
PH
, et al
.
Guidelines on transfusion for fetuses, neonates and older children
.
Br J Haematol
.
2016
;
175
(
5
):
784
-
828
.
43.
Devine
DV
.
Novel platelet products including cold-stored platelets
.
Hematology Am Soc Hematol Educ Program
.
2022
;
2022
(
1
):
421
-
423
.
44.
Tobian
AA
,
Savage
WJ
,
Tisch
DJ
,
Thoman
S
,
King
KE
,
Ness
PM
.
Prevention of allergic transfusion reactions to platelets and red blood cells through plasma reduction
.
Transfusion
.
2011
;
51
(
8
):
1676
-
1683
.
45.
Francia
V
,
Schiffelers
RM
,
Cullis
PR
,
Witzigmann
D
.
The biomolecular corona of lipid nanoparticles for gene therapy
.
Bioconjug Chem
.
2020
;
31
(
9
):
2046
-
2059
.
46.
Dilliard
SA
,
Cheng
Q
,
Siegwart
DJ
.
On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
52
):
e2109256118
.
47.
Zhang
R
,
El-Mayta
R
,
Murdoch
TJ
, et al
.
Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver
.
Biomater Sci
.
2021
;
9
(
4
):
1449
-
1463
.
48.
Hafez
IM
,
Maurer
N
,
Cullis
PR
.
On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids
.
Gene Ther
.
2001
;
8
(
15
):
1188
-
1196
.
49.
Kulkarni
JA
,
Myhre
JL
,
Chen
S
, et al
.
Design of lipid nanoparticles for in vitro and in vivo delivery of plasmid DNA
.
Nanomedicine
.
2017
;
13
(
4
):
1377
-
1387
.
50.
Seynhaeve
ALB
,
Dicheva
BM
,
Hoving
S
,
Koning
GA
,
Ten Hagen
TLM
.
Intact Doxil is taken up intracellularly and released doxorubicin sequesters in the lysosome: evaluated by in vitro/in vivo live cell imaging
.
J Control Release
.
2013
;
172
(
1
):
330
-
340
.
51.
Mui
BL
,
Tam
YK
,
Jayaraman
M
, et al
.
Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles
.
Mol Ther Nucleic Acids
.
2013
;
2
(
12
):
e139
.
52.
Hayashi
Y
,
Takenaka
S
,
Kohmura
C
,
Ikeda
H
.
Preparation of discoid washed platelets by differential centrifugation
.
Clin Chim Acta
.
1998
;
275
(
1
):
99
-
105
.
53.
Omo-Lamai
S
,
Zamora
ME
,
Patel
MN
, et al
.
Physicochemical targeting of lipid nanoparticles to the lungs induces clotting: mechanisms and solutions
.
Adv Mater
.
2024
;
36
(
26
):
e2312026
.
54.
Golebiewska
EM
,
Poole
AW
.
Platelet secretion: from haemostasis to wound healing and beyond
.
Blood Rev
.
2015
;
29
(
3
):
153
-
162
.
55.
de Wit
YES
,
Vlaar
R
,
Gouwerok
E
, et al
.
Platelet concentrates in platelet additive solutions generate less complement activation products during storage than platelets stored in plasma
.
Blood Transfus
.
2023
;
21
(
2
):
157
-
167
.
56.
Thon
JN
,
Devine
DV
.
Translation of glycoprotein IIIa in stored blood platelets
.
Transfusion
.
2007
;
47
(
12
):
2260
-
2270
.
57.
Ng
MSY
,
Tung
JP
,
Fraser
JF
.
Platelet storage lesions: what more do we know now?
.
Transfus Med Rev
.
2018
;
32
(
3
):
144
-
154
.
58.
Mills
EW
,
Green
R
,
Ingolia
NT
.
Slowed decay of mRNAs enhances platelet specific translation
.
Blood
.
2017
;
129
(
17
):
e38
-
e48
.
59.
Mills
EW
,
Wangen
J
,
Green
R
,
Ingolia
NT
.
Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets
.
Cell Rep
.
2016
;
17
(
1
):
1
-
10
.
60.
Pienimaeki-Roemer
A
,
Kuhlmann
K
,
Bottcher
A
, et al
.
Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets
.
Transfusion
.
2015
;
55
(
3
):
507
-
521
.
61.
Green
SM
,
Padula
MP
,
Dodgen
TM
,
Batarseh
A
,
Marks
DC
,
Johnson
L
.
Lipidomic changes occurring in platelets during extended cold storage
.
Transfus Med
.
2024
;
34
(
3
):
189
-
199
.
62.
Cardigan
R
,
Williamson
LM
.
The quality of platelets after storage for 7 days
.
Transfus Med
.
2003
;
13
(
4
):
173
-
187
.
63.
Kufrin
D
,
Eslin
DE
,
Bdeir
K
, et al
.
Antithrombotic thrombocytes: ectopic expression of urokinase-type plasminogen activator in platelets
.
Blood
.
2003
;
102
(
3
):
926
-
933
.
64.
Schiffer
CA
,
Bohlke
K
,
Delaney
M
, et al
.
Platelet transfusion for patients with cancer: American Society of Clinical Oncology clinical practice guideline update
.
J Clin Oncol
.
2018
;
36
(
3
):
283
-
299
.
65.
Haemmerle
M
,
Stone
RL
,
Menter
DG
,
Afshar-Kharghan
V
,
Sood
AK
.
The platelet lifeline to cancer: challenges and opportunities
.
Cancer Cell
.
2018
;
33
(
6
):
965
-
983
.
You do not currently have access to this content.
Sign in via your Institution