• In the absence of an HLA-identical donor, haploidentical HSCT with either TCRαβ/CD19 depletion or PTCY is a feasible option in CGD.

  • Graft failure remains challenging, with CI of grade 2 to 4 acute GVHD, but not grade 3 to 4, being significantly higher after PTCY.

Abstract

Chronic granulomatous disease (CGD) is an inborn error of immunity characterized by defective NAD phosphate oxidase function, leading to impaired microbial killing, recurrent infections, and granulomatous inflammation. Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for CGD, particularly effective when a fully HLA-matched donor is available. However, the place of HLA-haploidentical HSCT remains less established. This retrospective multicenter study analyzed outcomes of 64 patients with CGD (53 males; 46 with X-linked CGD) who underwent a first HSCT with HLA-haploidentical family donors, with either in vitro T-cell receptor (TCR)αβ/CD19 depletion or in vivo depletion using posttransplant cyclophosphamide (PTCY). The mean age at transplant was 5.8 years (range, 0-33). Patients exhibited a high disease burden before HSCT, with 45% experiencing infections in the 6 months before HSCT and 67% exhibiting inflammation. Outcomes in the entire cohort showed a 3-year overall survival, event-free survival (EFS), and grade 3 to 4 graft-versus-host disease (GVHD)–free EFS of 75.9%, 70.2%, and 56.1%, respectively, and were not affected by the type of depletion or age. The cumulative incidence (CI) of primary graft failure (PGF) was 20.6%. The CI of grade 2 to 4 acute GVHD was higher in the PTCY group (P = .04), whereas the CI of grade 3 to 4 GVHD was not. These results indicate that HLA-haploidentical HSCT is a feasible transplant option for patients with CGD lacking HLA-matched donors. Further refinement of transplant protocols is necessary to mitigate graft failure and acute GVHD, ultimately improving access and outcomes for this life-saving therapy.

1.
Winkelstein
JA
,
Marino
MC
,
Johnston
RB
, et al
.
Chronic granulomatous disease. Report on a National Registry of 368 patients
.
Medicine (Baltimore)
.
2000
;
79
(
3
):
155
-
169
.
2.
Zerbe
CS
,
Holland
SM
.
Functional neutrophil disorders: chronic granulomatous disease and beyond
.
Immunol Rev
.
2024
;
322
(
1
):
71
-
80
.
3.
Falcone
EL
,
Holland
SM
.
Invasive fungal infection in chronic granulomatous disease: insights into pathogenesis and management
.
Curr Opin Infect Dis
.
2012
;
25
(
6
):
658
-
669
.
4.
Magnani
A
,
Brosselin
P
,
Beauté
J
, et al
.
Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease
.
J Allergy Clin Immunol
.
2014
;
134
(
3
):
655
-
662.e8
.
5.
Campos
LC
,
Di Colo
G
,
Dattani
V
, et al
.
Long-term outcomes for adults with chronic granulomatous disease in the United Kingdom
.
J Allergy Clin Immunol
.
2021
;
147
(
3
):
1104
-
1107
.
6.
Dunogué
B
,
Pilmis
B
,
Mahlaoui
N
, et al
.
Chronic granulomatous disease in patients reaching adulthood: a nationwide study in France
.
Clin Infect Dis
.
2017
;
64
(
6
):
767
-
775
.
7.
Cole
T
,
Pearce
MS
,
Cant
AJ
,
Cale
CM
,
Goldblatt
D
,
Gennery
AR
.
Clinical outcome in children with chronic granulomatous disease managed conservatively or with hematopoietic stem cell transplantation
.
J Allergy Clin Immunol
.
2013
;
132
(
5
):
1150
-
1155
.
8.
Dedieu
C
,
Albert
MH
,
Mahlaoui
N
, et al
.
Outcome of chronic granulomatous disease - conventional treatment vs stem cell transplantation
.
Pediatr Allergy Immunol
.
2021
;
32
(
3
):
576
-
585
.
9.
Åhlin
A
,
Fasth
A
.
Chronic granulomatous disease - conventional treatment vs. hematopoietic stem cell transplantation: an update
.
Curr Opin Hematol
.
2015
;
22
(
1
):
41
-
45
.
10.
Bone-marrow transplant from an unrelated donor for chronic granulomatous disease: The Westminster Hospitals Bone Marrow Transplant Team
.
Lancet
.
1977
;
1
(
8005
):
210
-
213
.
11.
Güngör
T
,
Chiesa
R
.
Cellular therapies in chronic granulomatous disease
.
Front Pediatr
.
2020
;
8
:
327
.
12.
Slatter
MA
,
Gennery
AR
.
Haematopoietic stem cell transplantation for chronic granulomatous disease
.
J Clin Med
.
2023
;
12
(
18
):
6083
.
13.
Lum
SH
,
Flood
T
,
Hambleton
S
, et al
.
Two decades of excellent transplant survival for chronic granulomatous disease: a supraregional immunology transplant center report
.
Blood
.
2019
;
133
(
23
):
2546
-
2549
.
14.
Leiding
JW
,
Vogel
TP
,
Santarlas
VGJ
, et al
.
Monogenic early-onset lymphoproliferation and autoimmunity: natural history of STAT3 gain-of-function syndrome
.
J Allergy Clin Immunol
.
2023
;
151
(
4
):
1081
-
1095
.
15.
Chiesa
R
,
Wang
J
,
Blok
H-J
, et al
.
Hematopoietic cell transplantation in chronic granulomatous disease: a study of 712 children and adults
.
Blood
.
2020
;
136
(
10
):
1201
-
1211
.
16.
Güngör
T
,
Teira
P
,
Slatter
M
, et al
.
Reduced-intensity conditioning and HLA-matched haemopoietic stem-cell transplantation in patients with chronic granulomatous disease: a prospective multicentre study
.
Lancet Lond Engl
.
2014
;
383
(
9915
):
436
-
448
.
17.
Marsh
RA
,
Leiding
JW
,
Logan
BR
, et al
.
Chronic granulomatous disease-associated IBD resolves and does not adversely impact survival following allogeneic HCT
.
J Clin Immunol
.
2019
;
39
(
7
):
653
-
667
.
18.
Ruttens
D
,
Philippet
P
,
Bucciol
G
,
Meyts
I
;
HSCT advisory team
.
Haploidentical stem cell transplantation with post-transplantation cyclophosphamide in high-risk chronic granulomatous disease patient with invasive mucormycosis
.
J Clin Immunol
.
2023
;
43
(
8
):
1758
-
1765
.
19.
Parta
M
,
Hilligoss
D
,
Kelly
C
, et al
.
Failure to prevent severe graft-versus-host disease in haploidentical hematopoietic cell transplantation with post-transplant cyclophosphamide in chronic granulomatous disease
.
J Clin Immunol
.
2020
;
40
(
4
):
619
-
624
.
20.
Leiding
JW
,
Arnold
DE
,
Parikh
S
, et al
.
Genotype, oxidase status, and preceding infection or autoinflammation do not affect allogeneic HCT outcomes for CGD
.
Blood
.
2023
;
142
(
24
):
2105
-
2118
.
21.
Lum
SH
,
Albert
MH
,
Gilbert
P
, et al
.
Outcomes of HLA-mismatched HSCT with TCRαβ/CD19 depletion or post-HSCT cyclophosphamide for inborn errors of immunity
.
Blood
.
2024
;
144
(
5
):
565
-
580
.
22.
Tsilifis
C
,
Lum
SH
,
Nademi
Z
, et al
.
TCRαβ-depleted haploidentical grafts are a safe alternative to HLA-matched unrelated donor stem cell transplants for infants with severe combined immunodeficiency
.
J Clin Immunol
.
2022
;
42
(
4
):
851
-
858
.
23.
Merli
P
,
Pagliara
D
,
Galaverna
F
, et al
.
TCRαβ/CD19 depleted HSCT from an HLA-haploidentical relative to treat children with different nonmalignant disorders
.
Blood Adv
.
2022
;
6
(
1
):
281
-
292
.
24.
Bertaina
A
,
Merli
P
,
Rutella
S
, et al
.
HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders
.
Blood
.
2014
;
124
(
5
):
822
-
826
.
25.
Neven
B
,
Diana
J-S
,
Castelle
M
, et al
.
Haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide for primary immunodeficiencies and inherited disorders in children
.
Biol Blood Marrow Transpl
.
2019
;
25
(
7
):
1363
-
1373
.
26.
Kurzay
M
,
Hauck
F
,
Schmid
I
, et al
.
T-cell replete haploidentical bone marrow transplantation and post-transplant cyclophosphamide for patients with inborn errors
.
Haematologica
.
2019
;
104
(
10
):
e478
-
e482
.
27.
Fernandes
JF
,
Nichele
S
,
Arcuri
LJ
, et al
.
Outcomes after haploidentical stem cell transplantation with post-transplantation cyclophosphamide in patients with primary immunodeficiency diseases
.
Biol Blood Marrow Transpl
.
2020
;
26
(
10
):
1923
-
1929
.
28.
Sobrino
S
,
Magnani
A
,
Semeraro
M
, et al
.
Severe hematopoietic stem cell inflammation compromises chronic granulomatous disease gene therapy
.
Cell Rep Med
.
2023
;
4
(
2
):
100919
.
29.
Rottman
M
,
Soudais
C
,
Vogt
G
, et al
.
IFN-gamma mediates the rejection of haematopoietic stem cells in IFN-gammaR1-deficient hosts
.
Plos Med
.
2008
;
5
(
1
):
e26
.
30.
Achini-Gutzwiller
FR
,
Schilham
MW
,
von Asmuth
EGJ
, et al
.
Exposure-response analysis of alemtuzumab in pediatric allogeneic HSCT for nonmalignant diseases: the ARTIC study
.
Blood Adv
.
2023
;
7
(
16
):
4462
-
4474
.
31.
Oostenbrink
LVE
,
Von Asmuth
EGJ
,
Jol-van der Zijde
CM
, et al
.
Anti-T-lymphocyte globulin exposure is associated with acute graft-versus-host disease and relapse in pediatric acute lymphoblastic leukemia patients undergoing hematopoietic stem cell transplantation: a multinational prospective study
.
Haematologica
.
2024
;
109
(
9
):
2854
-
2863
.
32.
Admiraal
R
,
Nierkens
S
,
Bierings
MB
, et al
.
Individualised dosing of anti-thymocyte globulin in paediatric unrelated allogeneic haematopoietic stem-cell transplantation (PARACHUTE): a single-arm, phase 2 clinical trial
.
Lancet Haematol
.
2022
;
9
(
2
):
e111
-
e120
.
33.
Bognàr
T
,
Garcia-Rosa
M
,
Lalmohamed
A
, et al
.
Association of Busulfan exposure and outcomes after HCT for patients with an inborn error of immunity
.
Blood Adv
.
2024
;
8
(
19
):
5137
-
5145
.
34.
Sykora
K-W
,
Beier
R
,
Schulz
A
, et al
.
Treosulfan vs busulfan conditioning for allogeneic bmt in children with nonmalignant disease: a randomized phase 2 trial
.
Bone Marrow Transpl
.
2024
;
59
(
1
):
107
-
116
.
35.
Albert
MH
,
Slatter
MA
,
Gennery
AR
, et al
.
Hematopoietic stem cell transplantation for Wiskott-Aldrich syndrome: an EBMT Inborn Errors Working Party analysis
.
Blood
.
2022
;
139
(
13
):
2066
-
2079
.
36.
Jacoby
E
,
Adam
E
,
Hutt
D
, et al
.
Improved outcome following Busulfan-based conditioning in children with functional neutrophil disorders undergoing hematopoietic stem cell transplant from HLA-matched donors
.
J Clin Immunol
.
2023
;
43
(
7
):
1603
-
1610
.
37.
Morillo-Gutierrez
B
,
Beier
R
,
Rao
K
, et al
.
Treosulfan-based conditioning for allogeneic HSCT in children with chronic granulomatous disease: a multicenter experience
.
Blood
.
2016
;
128
(
3
):
440
-
448
.
You do not currently have access to this content.
Sign in via your Institution