Abstract

Thrombus structure and composition are the main determinants of the severity, course, and outcomes of thrombosis. Detailed thrombus morphology has become available due to mechanical thrombectomy, which allows for the extraction of fresh thrombi from patients, followed by scanning electron microscopy. The major structural elements of a thrombus are platelets, erythrocytes, and fibrin, each playing a critical role in the determination of biological and physical properties of thrombi, such as permeability, stiffness, and lytic and mechanical stability. The minor components include neutrophils, monocytes, von Willebrand factor, cellular microvesicles, plasma proteins, cholesterol crystals, and other structures. Platelets are responsible for the contraction (retraction) of thrombi, which results in compaction with very little free space, low permeability, and high stiffness. Because of clot contraction, erythrocytes, which are prevalent in all types of thrombi, undergo compressive deformation to polyhedral (polyhedrocytes) and polyhedral-like cells, altogether comprising pressure-deformed cells (piezocytes). Fibrin is the structural and mechanical scaffold of thrombi that changes in time and space both quantitatively and qualitatively during their formation. Fibrin is an equilibrium polymer that can adapt to forced deformations by reorientation at the microscopic level and unfolding at the molecular level. The relative volume fractions of thrombus components, along with their functional and structural forms, vary substantially, providing a basis for the diverse pathogenic mechanisms and clinical manifestations of thrombosis. Modulating any of these components leads to prospective therapeutic approaches. This review summarizes recent research describing the quantitative and qualitative morphologic characteristics of arterial and venous thrombi, which provide a basis for new therapeutic opportunities in thrombosis.

1.
Forrester
JM
.
Malpighi's de polypo cordis: an annotated translation
.
Med Hist
.
1995
;
39
(
4
):
477
-
492
.
2.
Chernysh
IN
,
Nagaswami
C
,
Kosolapova
S
, et al
.
The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli
.
Sci Rep
.
2020
;
10
(
1
):
5112
.
3.
Delvoye
F
,
Di Meglio
L
,
Consoli
A
, et al
.
High thrombus platelet content is associated with a lower rate of first pass effect in stroke treated by endovascular therapy
.
Eur Stroke J
.
2022
;
7
(
4
):
376
-
383
.
4.
Mereuta
OM
,
Fitzgerald
S
,
Christensen
TA
, et al
.
High-resolution scanning electron microscopy for the analysis of three-dimensional ultrastructure of clots in acute ischemic stroke
.
J Neurointerv Surg
.
2021
;
13
(
10
):
906
-
911
.
5.
Staessens
S
,
De Meyer
SF
.
Thrombus heterogeneity in ischemic stroke
.
Platelets
.
2021
;
32
(
3
):
331
-
339
.
6.
Vandelanotte
S
,
De Meyer
SF
.
Acute ischemic stroke thrombus composition
.
Neuroscience
.
2024
;
550
:
11
-
20
.
7.
Macauley
D
. Outside-in: restor(y)ing the seasons. In:
Bremer
S
,
Wardekker
A
, eds.
Changing Seasonality: How Communities are Revising their Seasons
.
De Gruyter
;
2024
:
155
-
161
.
8.
Khismatullin
RR
,
Abdullayeva
S
,
Peshkova
AD
, et al
.
Extent of intravital contraction of arterial and venous thrombi and pulmonary emboli
.
Blood Adv
.
2022
;
6
(
6
):
1708
-
1718
.
9.
Kim
YD
,
Kwon
I
,
Park
Y
, et al
.
Association of clot ultrastructure with clot perviousness in stroke patients
.
Sci Rep
.
2023
;
13
(
1
):
14568
.
10.
Litvinov
RI
,
Weisel
JW
.
Blood clot contraction: mechanisms, pathophysiology, and disease
.
Res Pract Thromb Haemost
.
2023
;
7
(
1
):
100023
.
11.
Nurden
AT
.
Molecular basis of clot retraction and its role in wound healing
.
Thromb Res
.
2023
;
231
:
159
-
169
.
12.
Ono
A
,
Westein
E
,
Hsiao
S
, et al
.
Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth
.
Blood
.
2008
;
112
(
1
):
90
-
99
.
13.
Lam
WA
,
Chaudhuri
O
,
Crow
A
, et al
.
Mechanics and contraction dynamics of single platelets and implications for clot stiffening
.
Nat Mater
.
2011
;
10
(
1
):
61
-
66
.
14.
Lin
J
,
Sorrells
MG
,
Lam
WA
,
Neeves
KB
.
Physical forces regulating hemostasis and thrombosis: vessels, cells, and molecules in illustrated review
.
Res Pract Thromb Haemost
.
2021
;
5
(
5
):
e12548
.
15.
Qiu
Y
,
Brown
AC
,
Myers
DR
, et al
.
Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
40
):
14430
-
14435
.
16.
Kim
OV
,
Litvinov
RI
,
Alber
MS
,
Weisel
JW
.
Quantitative structural mechanobiology of platelet-driven blood clot contraction
.
Nat Commun
.
2017
;
8
(
1
):
1274
.
17.
Evtugina
NG
,
Peshkova
AD
,
Pichugin
AA
,
Weisel
JW
,
Litvinov
RI
.
Impaired contraction of blood clots precedes and predicts postoperative venous thromboembolism
.
Sci Rep
.
2020
;
10
(
1
):
18261
.
18.
Le Minh
G
,
Peshkova
AD
,
Andrianova
IA
, et al
.
Impaired contraction of blood clots as a novel prothrombotic mechanism in systemic lupus erythematosus
.
Clin Sci (Lond)
.
2018
;
132
(
2
):
243
-
254
.
19.
Peshkova
AD
,
Malyasyov
DV
,
Bredikhin
RA
, et al
.
Reduced contraction of blood clots in venous thromboembolism is a potential thrombogenic and embologenic mechanism
.
TH Open
.
2018
;
2
(
1
):
e104
-
e115
.
20.
Tomasiak-Lozowska
MM
,
Rusak
T
,
Misztal
T
,
Bodzenta-Lukaszyk
A
,
Tomasiak
M
.
Reduced clot retraction rate and altered platelet energy production in patients with asthma
.
J Asthma
.
2016
;
53
(
6
):
589
-
598
.
21.
Tutwiler
V
,
Litvinov
RI
,
Protopopova
A
, et al
.
Pathologically stiff erythrocytes impede contraction of blood clots
.
J Thromb Haemost
.
2021
;
19
(
8
):
1990
-
2001
.
22.
Tutwiler
V
,
Peshkova
AD
,
Andrianova
IA
,
Khasanova
DR
,
Weisel
JW
,
Litvinov
RI
.
Contraction of blood clots is impaired in acute ischemic stroke
.
Arterioscler Thromb Vasc Biol
.
2017
;
37
(
2
):
271
-
279
.
23.
Andrianova
IA
,
Khabirova
AI
,
Ponomareva
AA
, et al
.
Chronic immune platelet activation is followed by platelet refractoriness and impaired contractility
.
Int J Mol Sci
.
2022
;
23
(
13
):
7336
.
24.
Samson
AL
,
Alwis
I
,
Maclean
JAA
, et al
.
Endogenous fibrinolysis facilitates clot retraction in vivo
.
Blood
.
2017
;
130
(
23
):
2453
-
2462
.
25.
Litvinov
RI
,
Gorkun
OV
,
Owen
SF
,
Shuman
H
,
Weisel
JW
.
Polymerization of fibrin: specificity, strength, and stability of knob-hole interactions studied at the single-molecule level
.
Blood
.
2005
;
106
(
9
):
2944
-
2951
.
26.
Litvinov
RI
,
Mekler
A
,
Shuman
H
,
Bennett
JS
,
Barsegov
V
,
Weisel
JW
.
Resolving two-dimensional kinetics of the integrin alphaIIbbeta3-fibrinogen interactions using binding-unbinding correlation spectroscopy
.
J Biol Chem
.
2012
;
287
(
42
):
35275
-
35285
.
27.
Litvinov
RI
,
Shuman
H
,
Bennett
JS
,
Weisel
JW
.
Binding strength and activation state of single fibrinogen-integrin pairs on living cells
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
11
):
7426
-
7431
.
28.
Buitrago
L
,
Lefkowitz
S
,
Bentur
O
,
Padovan
J
,
Coller
B
.
Platelet binding to polymerizing fibrin is avidity driven and requires activated alphaIIbbeta3 but not fibrin cross-linking
.
Blood Adv
.
2021
;
5
(
20
):
3986
-
4002
.
29.
Hook
P
,
Litvinov
RI
,
Kim
OV
, et al
.
Strong binding of platelet integrin alphaIIbbeta3 to fibrin clots: potential target to destabilize thrombi
.
Sci Rep
.
2017
;
7
(
1
):
13001
.
30.
Litvinov
RI
,
Farrell
DH
,
Weisel
JW
,
Bennett
JS
.
The platelet integrin alphaIIbβ3 differentially interacts with fibrin versus fibrinogen
.
J Biol Chem
.
2016
;
291
(
15
):
7858
-
7867
.
31.
Estevez
B
,
Shen
B
,
Du
X
.
Targeting integrin and integrin signaling in treating thrombosis
.
Arterioscler Thromb Vasc Biol
.
2015
;
35
(
1
):
24
-
29
.
32.
Cox
D
,
Smith
R
,
Quinn
M
,
Theroux
P
,
Crean
P
,
Fitzgerald
DJ
.
Evidence of platelet activation during treatment with a GPIIb/IIIa antagonist in patients presenting with acute coronary syndromes
.
J Am Coll Cardiol
.
2000
;
36
(
5
):
1514
-
1519
.
33.
Hantgan
RR
,
Stahle
MC
,
Connor
JH
,
Connor
RF
,
Mousa
SA
.
AlphaIIbbeta3 priming and clustering by orally active and intravenous integrin antagonists
.
J Thromb Haemost
.
2007
;
5
(
3
):
542
-
550
.
34.
Kim
OV
,
Nevzorova
TA
,
Mordakhanova
ER
, et al
.
Fatal dysfunction and disintegration of thrombin-stimulated platelets
.
Haematologica
.
2019
;
104
(
9
):
1866
-
1878
.
35.
Mordakhanova
ER
,
Nevzorova
TA
,
Synbulatova
GE
,
Rauova
L
,
Weisel
JW
,
Litvinov
RI
.
Platelet activation in heparin-induced thrombocytopenia is followed by platelet death via complex apoptotic and non-apoptotic pathways
.
Int J Mol Sci
.
2020
;
21
(
7
):
2556
.
36.
Nevzorova
TA
,
Mordakhanova
ER
,
Daminova
AG
, et al
.
Platelet factor 4-containing immune complexes induce platelet activation followed by calpain-dependent platelet death
.
Cell Death Discov
.
2019
;
5
:
106
.
37.
Cines
DB
,
Lebedeva
T
,
Nagaswami
C
, et al
.
Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin
.
Blood
.
2014
;
123
(
10
):
1596
-
1603
.
38.
Khismatullin
RR
,
Nagaswami
C
,
Shakirova
AZ
, et al
.
Quantitative morphology of cerebral thrombi related to intravital contraction and clinical features of ischemic stroke
.
Stroke
.
2020
;
51
(
12
):
3640
-
3650
.
39.
Tutwiler
V
,
Mukhitov
AR
,
Peshkova
AD
, et al
.
Shape changes of erythrocytes during blood clot contraction and the structure of polyhedrocytes
.
Sci Rep
.
2018
;
8
(
1
):
17907
.
40.
Thomson
W
.
On the division of space with minimum partitional area
.
Acta Math
.
1887
;
11
:
121
-
134
.
41.
Narwal
A
,
Whyte
CS
,
Mutch
NJ
.
Location, location, location: fibrin, cells, and fibrinolytic factors in thrombi
.
Front Cardiovasc Med
.
2022
;
9
:
91070502
.
42.
Di Meglio
L
,
Derraz
I
,
Solonomenjanahary
M
, et al
.
Two-layered susceptibility vessel sign is associated with biochemically quantified thrombus red blood cell content
.
Eur J Neurol
.
2020
;
27
(
7
):
1264
-
1271
.
43.
Johnson
JN
,
Srivatsan
A
,
Chueh
J
, et al
.
Impact of histological clot composition on preprocedure imaging and mechanical thrombectomy
.
Brain Circ
.
2022
;
8
(
2
):
87
-
93
.
44.
Byrnes
JR
,
Duval
C
,
Wang
Y
, et al
.
Factor XIIIa-dependent retention of red blood cells in clots is mediated by fibrin alpha-chain crosslinking
.
Blood
.
2015
;
126
(
16
):
1940
-
1948
.
45.
Byrnes
JR
,
Wolberg
AS
.
Newly-recognized roles of factor XIII in thrombosis
.
Semin Thromb Hemost
.
2016
;
42
(
4
):
445
-
454
.
46.
Faes
C
,
Ilich
A
,
Sotiaux
A
, et al
.
Red blood cells modulate structure and dynamics of venous clot formation in sickle cell disease
.
Blood
.
2019
;
133
(
23
):
2529
-
2541
.
47.
Cahalan
SM
,
Lukacs
V
,
Ranade
SS
,
Chien
S
,
Bandell
M
,
Patapoutian
A
.
Piezo1 links mechanical forces to red blood cell volume
.
Elife
.
2015
;
4
:
e07370
.
48.
Evtugina
NG
,
Peshkova
AD
,
Khabirova
AI
, et al
.
Activation of piezo1 channels in compressed red blood cells augments platelet-driven contraction of blood clots
.
J Thromb Haemost
.
2023
;
21
(
9
):
2418
-
2429
.
49.
Litvinov
RI
,
Weisel
JW
.
Fibrin mechanical properties and their structural origins
.
Matrix Biol
.
2017
;
60-61
:
110
-
123
.
50.
Liang
X
,
Chernysh
I
,
Purohit
PK
,
Weisel
JW
.
Phase transitions during compression and decompression of clots from platelet-poor plasma, platelet-rich plasma and whole blood
.
Acta Biomater
.
2017
;
60
:
275
-
290
.
51.
Chandrashekar
A
,
Singh
G
,
Garry
J
,
Sikalas
N
,
Labropoulos
N
.
Mechanical and biochemical role of fibrin within a venous thrombus
.
Eur J Vasc Endovasc Surg
.
2018
;
55
(
3
):
417
-
424
.
52.
Garyfallogiannis
K
,
Ramanujam
RK
,
Litvinov
RI
, et al
.
Fracture toughness of fibrin gels as a function of protein volume fraction: Mechanical origins
.
Acta Biomater
.
2023
;
159
:
49
-
62
.
53.
Ramanujam
RK
,
Maksudov
F
,
Risman
RA
, et al
.
Rupture mechanics of blood clots: influence of fibrin network structure on the rupture resistance
.
Acta Biomater
.
2024
;
190
:
329
-
343
.
54.
Tutwiler
V
,
Singh
J
,
Litvinov
RI
,
Bassani
JL
,
Purohit
PK
,
Weisel
JW
.
Rupture of blood clots: mechanics and pathophysiology
.
Sci Adv
.
2020
;
6
(
35
):
eabc0496
.
55.
Weisel
JW
,
Litvinov
RI
.
Mechanisms of fibrin polymerization and clinical implications
.
Blood
.
2013
;
121
(
10
):
1712
-
1719
.
56.
Litvinov
RI
,
Kononova
O
,
Zhmurov
A
, et al
.
Regulatory element in fibrin triggers tension-activated transition from catch to slip bonds
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
34
):
8575
-
8580
.
57.
Collet
JP
,
Moen
JL
,
Veklich
YI
, et al
.
The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis
.
Blood
.
2005
;
106
(
12
):
3824
-
3830
.
58.
Medved
L
,
Weisel
JW
.
The story of the fibrin(ogen) αC-domains: evolution of our view on their structure and interactions
.
Thromb Haemost
.
2022
;
122
(
8
):
1265
-
1278
.
59.
Protopopova
AD
,
Litvinov
RI
,
Galanakis
DK
, et al
.
Morphometric characterization of fibrinogen's αC regions and their role in fibrin self-assembly and molecular organization
.
Nanoscale
.
2017
;
9
(
36
):
13707
-
13716
.
60.
Silvain
J
,
Collet
JP
,
Nagaswami
C
, et al
.
Composition of coronary thrombus in acute myocardial infarction
.
J Am Coll Cardiol
.
2011
;
57
(
12
):
1359
-
1367
.
61.
Maly
M
,
Riedel
T
,
Stikarova
J
, et al
.
Incorporation of fibrin, platelets, and red blood cells into a coronary thrombus in time and space
.
Thromb Haemost
.
2022
;
122
(
3
):
434
-
444
.
62.
Mereuta
OM
,
Agarwal
T
,
Ghozy
S
, et al
.
Shell versus core architecture and biology of thrombi in acute ischemic stroke: a systematic review
.
Clin Appl Thromb Hemost
.
2023
;
29
:
10760296231213632
.
63.
Kovacs
A
,
Sotonyi
P
,
Nagy
AI
, et al
.
Ultrastructure and composition of thrombi in coronary and peripheral artery disease: correlations with clinical and laboratory findings
.
Thromb Res
.
2015
;
135
(
4
):
760
-
766
.
64.
Litvinov
RI
,
Khismatullin
RR
,
Shakirova
AZ
, et al
.
Morphological signs of intravital contraction (retraction) of pulmonary thrombotic emboli
.
Bionanosci
.
2018
;
8
(
1
):
428
-
433
.
65.
Chernysh
IN
,
Nagaswami
C
,
Purohit
PK
,
Weisel
JW
.
Fibrin clots are equilibrium polymers that can be remodeled without proteolytic digestion
.
Sci Rep
.
2012
;
2
:
879
.
66.
Soon
AS
,
Lee
CS
,
Barker
TH
.
Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide-peg conjugates
.
Biomaterials
.
2011
;
32
(
19
):
4406
-
4414
.
67.
Stabenfeldt
SE
,
Aboujamous
NM
,
Soon
AS
,
Barker
TH
.
A new direction for anticoagulants: inhibiting fibrin assembly with pegylated fibrin knob mimics
.
Biotechnol Bioeng
.
2011
;
108
(
10
):
2424
-
2433
.
68.
Bridge
KI
,
Philippou
H
,
Ariens
R
.
Clot properties and cardiovascular disease
.
Thromb Haemost
.
2014
;
112
(
5
):
901
-
908
.
69.
Collet
JP
,
Allali
Y
,
Lesty
C
, et al
.
Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis
.
Arterioscler Thromb Vasc Biol
.
2006
;
26
(
11
):
2567
-
2573
.
70.
Mihalko
E
,
Brown
AC
.
Clot structure and implications for bleeding and thrombosis
.
Semin Thromb Hemost
.
2020
;
46
(
1
):
96
-
104
.
71.
Sumaya
W
,
Wallentin
L
,
James
SK
, et al
.
Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: a PLATO substudy
.
Eur Heart J
.
2018
;
39
(
13
):
1078
-
1085
.
72.
Vilar
R
,
Fish
RJ
,
Casini
A
,
Neerman-Arbez
M
.
Fibrin(ogen) in human disease: both friend and foe
.
Haematologica
.
2020
;
105
(
2
):
284
-
296
.
73.
Zalewski
J
,
Bogaert
J
,
Sadowski
M
, et al
.
Plasma fibrin clot phenotype independently affects intracoronary thrombus ultrastructure in patients with acute myocardial infarction
.
Thromb Haemost
.
2015
;
113
(
6
):
1258
-
1269
.
74.
Zabczyk
M
,
Ariens
RAS
,
Undas
A
.
Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice
.
Cardiovasc Res
.
2023
;
119
(
1
):
94
-
111
.
75.
Zabczyk
M
,
Natorska
J
,
Undas
A
.
Fibrin clot properties in atherosclerotic vascular disease: from pathophysiology to clinical outcomes
.
J Clin Med
.
2021
;
10
(
13
):
2999
.
76.
Undas
A
.
Prothrombotic fibrin clot phenotype in patients with deep vein thrombosis and pulmonary embolism: a new risk factor for recurrence
.
Biomed Res Int
.
2017
;
2017
:
8196256
.
77.
Weisel
JW
,
Litvinov
RI
.
Red blood cells: the forgotten player in hemostasis and thrombosis
.
J Thromb Haemost
.
2019
;
17
(
2
):
271
-
282
.
78.
Macrae
FL
,
Duval
C
,
Papareddy
P
, et al
.
A fibrin biofilm covers blood clots and protects from microbial invasion
.
J Clin Invest
.
2018
;
128
(
8
):
3356
-
3368
.
79.
Alkarithi
G
,
Duval
C
,
Shi
Y
,
Macrae
FL
,
Ariens
RAS
.
Thrombus structural composition in cardiovascular disease
.
Arterioscler Thromb Vasc Biol
.
2021
;
41
(
9
):
2370
-
2383
.
80.
Weisel
JW
.
The mechanical properties of fibrin for basic scientists and clinicians
.
Biophys Chem
.
2004
;
112
(
2-3
):
267
-
276
.
81.
Averett
LE
,
Geer
CB
,
Fuierer
RR
,
Akhremitchev
BB
,
Gorkun
OV
,
Schoenfisch
MH
.
Complexity of "A-a" knob-hole fibrin interaction revealed by atomic force spectroscopy
.
Langmuir
.
2008
;
24
(
9
):
4979
-
4988
.
82.
Brown
AE
,
Litvinov
RI
,
Discher
DE
,
Purohit
PK
,
Weisel
JW
.
Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water
.
Science
.
2009
;
325
(
5941
):
741
-
744
.
83.
Brown
AE
,
Litvinov
RI
,
Discher
DE
,
Weisel
JW
.
Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM
.
Biophys J
.
2007
;
92
(
5
):
L39
-
L41
.
84.
Houser
JR
,
Hudson
NE
,
Ping
L
, et al
.
Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers
.
Biophys J
.
2010
;
99
(
9
):
3038
-
3047
.
85.
Litvinov
RI
,
Faizullin
DA
,
Zuev
YF
,
Weisel
JW
.
The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots
.
Biophys J
.
2012
;
103
(
5
):
1020
-
1027
.
86.
Zhmurov
A
,
Brown
AE
,
Litvinov
RI
,
Dima
RI
,
Weisel
JW
,
Barsegov
V
.
Mechanism of fibrin(ogen) forced unfolding
.
Structure
.
2011
;
19
(
11
):
1615
-
1624
.
87.
Zhmurov
A
,
Kononova
O
,
Litvinov
RI
,
Dima
RI
,
Barsegov
V
,
Weisel
JW
.
Mechanical transition from α-helical coiled coils to β-sheets in fibrin(ogen)
.
J Am Chem Soc
.
2012
;
134
(
50
):
20396
-
20402
.
88.
Middleton
EA
,
He
XY
,
Denorme
F
, et al
.
Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome
.
Blood
.
2020
;
136
(
10
):
1169
-
1179
.
89.
Osterud
B
.
Tissue factor expression by monocytes: regulation and pathophysiological roles
.
Blood Coagul Fibrinolysis
.
1998
;
9
(
suppl 1
):
S9
-
S14
.
90.
Peshkova
AD
,
Le Minh
G
,
Tutwiler
V
,
Andrianova
IA
,
Weisel
JW
,
Litvinov
RI
.
Activated monocytes enhance platelet-driven contraction of blood clots via tissue factor expression
.
Sci Rep
.
2017
;
7
(
1
):
5149
.
91.
Sachetto
ATA
,
Mackman
N
.
Monocyte tissue factor expression: lipopolysaccharide induction and roles in pathological activation of coagulation
.
Thromb Haemost
.
2023
;
123
(
11
):
1017
-
1033
.
92.
Peshkova
AD
,
Saliakhutdinova
SM
,
Sounbuli
K
, et al
.
The differential formation and composition of leukocyte-platelet aggregates induced by various cellular stimulants
.
Thromb Res
.
2024
;
241
:
109092
.
93.
Liu
ZL
,
Bresette
C
,
Aidun
CK
,
Ku
DN
.
SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear
.
Blood Adv
.
2022
;
6
(
8
):
2453
-
2465
.
94.
Furie
B
,
Furie
BC
.
Role of platelet p-selectin and microparticle psgl-1 in thrombus formation
.
Trends Mol Med
.
2004
;
10
(
4
):
171
-
178
.
95.
Melki
I
,
Tessandier
N
,
Zufferey
A
,
Boilard
E
.
Platelet microvesicles in health and disease
.
Platelets
.
2017
;
28
(
3
):
214
-
221
.
96.
Zubairova
LD
,
Nabiullina
RM
,
Nagaswami
C
, et al
.
Circulating microparticles alter formation, structure, and properties of fibrin clots
.
Sci Rep
.
2015
;
5
:
17611
.
97.
Talens
S
,
Leebeek
FW
,
Demmers
JA
,
Rijken
DC
.
Identification of fibrin clot-bound plasma proteins
.
PLoS One
.
2012
;
7
(
8
):
e41966
.
98.
Abela
GS
,
Aziz
K
,
Vedre
A
,
Pathak
DR
,
Talbott
JD
,
Dejong
J
.
Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes
.
Am J Cardiol
.
2009
;
103
(
7
):
959
-
968
.
99.
Abela
GS
,
Shamoun
F
,
Vedre
A
, et al
.
The effect of ethanol on cholesterol crystals during tissue preparation for scanning electron microscopy
.
J Am Coll Cardiol
.
2012
;
59
(
1
):
93
-
94
.
100.
Silvain
J
,
Nagaswami
C
,
Weisel
JW
,
Collet
J-P
,
Montalescot
G
.
The effect of ethanol on cholesterol crystals during tissue preparation for scanning electron microscopy: reply
.
J Am Coll Cardiol
.
2012
;
59
(
1
):
93
-
94
.
101.
Kim
OV
,
Litvinov
RI
,
Gagne
AL
,
French
DL
,
Brass
LF
,
Weisel
JW
.
Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology
.
Blood
.
2024
;
143
(
6
):
548
-
560
.
You do not currently have access to this content.
Sign in via your Institution