Abstract

The US Food and Drug Administration recently licensed 14-day cold-stored platelets for bleeding patients. This policy change represents a reversal from the 1970s when cold-stored platelets were discontinued because of their short circulation time in healthy humans. This change will increase their availability in US hospitals with large trauma populations and in remote and rural settings in the United States. In some of these hospitals, cold-stored platelets will be the only platelets available. It is currently unclear whether patients with hypoproliferative thrombocytopenia who need platelet transfusion for prophylaxis benefit from cold-stored platelets. However, it is noteworthy that in recent clinical trials using room temperature–stored platelets, the transfusion interval in patients with hematologic and oncologic conditions can be as short as 1 transfusion per day, very similar to what one would expect to achieve with cold-stored platelets. Furthermore, the emphasis on the posttransfusion count increment and the platelet count as a transfusion trigger per se is questionable. In the PLADO trial, there was only a poor correlation between the morning platelet count and bleeding events, implicating other factors, such as red blood cells, coagulation factors, and vascular health, as possible culprits. In this perspective article, we review the history of cold platelets and the reason for their discontinuation, focus on recent clinical trial data using room temperature–stored platelets, and review the platelet count as a transfusion trigger. Overall, using cold platelets for prophylaxis may seem counterintuitive, but a closer look at the available data suggests that the indication expansion may hold more promise.

1.
Free
RJ
,
Sapiano
MRP
,
Chavez Ortiz
JL
,
Stewart
P
,
Berger
J
,
Basavaraju
SV
.
Continued stabilization of blood collections and transfusions in the United States: findings from the 2021 national blood collection and utilization survey
.
Transfusion
.
2023
;
63
(
suppl 4
):
S8
-
S18
.
2.
Estcourt
LJ
.
Why has demand for platelet components increased? A review
.
Transfus Med
.
2014
;
24
(
5
):
260
-
268
.
3.
Estcourt
LJ
,
Birchall
J
,
Lowe
D
,
Grant-Casey
J
,
Rowley
M
,
Murphy
MF
.
Platelet transfusions in haematology patients: are we using them appropriately?
.
Vox Sang
.
2012
;
103
(
4
):
284
-
293
.
4.
Gottschall
J
,
Wu
Y
,
Triulzi
D
, et al
.
The epidemiology of platelet transfusions: an analysis of platelet use at 12 US hospitals
.
Transfusion
.
2020
;
60
(
1
):
46
-
53
.
5.
Charlton
A
,
Wallis
J
,
Robertson
J
,
Watson
D
,
Iqbal
A
,
Tinegate
H
.
Where did platelets go in 2012? A survey of platelet transfusion practice in the North of England
.
Transfus Med
.
2014
;
24
(
4
):
213
-
218
.
6.
Department of Health and Human Services
.
The 2011 National Blood Collection and Utilization Survey Report
. 2011. Accessed 12 May 2025. https://www.hhs.gov/sites/default/files/ash/bloodsafety/2011-nbcus.pdf.
7.
McDavid
K
,
Lien
R
,
Ortiz
JC
, et al
.
Have we reached a new baseline for blood collection and transfusion in the United States? National Blood Collection and Utilization Survey, 2023
.
Transfusion
.
Published online 11 March 2025
.
8.
Hong
H
,
Xiao
W
,
Lazarus
HM
,
Good
CE
,
Maitta
RW
,
Jacobs
MR
.
Detection of septic transfusion reactions to platelet transfusions by active and passive surveillance
.
Blood
.
2016
;
127
(
4
):
496
-
502
.
9.
Jacobs
MR
.
FDA guidance on bacterial contamination risk control strategies to enhance the safety and availability of platelets: advantages and limitations
.
Ann Blood
.
2021
;
6
(
0
). 18-18.
10.
Association for the Advancement of Blood & Biotherapies
.
Impact of the FDA Guidance “Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion.”
. 2021. Accessed 12 May 2025. https://www.aabb.org/docs/default-source/default-document-library/resources/association-bulletins/ab21-02.pdf?sfvrsn=6c304e60.
11.
Haass
KA
,
Sapiano
MRP
,
Savinkina
A
,
Kuehnert
MJ
,
Basavaraju
SV
.
Transfusion-transmitted infections reported to the national healthcare safety network hemovigilance module
.
Transfus Med Rev
.
2019
;
33
(
2
):
84
-
91
.
12.
Ketter
PM
,
Kamucheka
R
,
Arulanandam
B
,
Akers
K
,
Cap
AP
.
Platelet enhancement of bacterial growth during room temperature storage: mitigation through refrigeration
.
Transfusion
.
2019
;
59
(
S2
):
1479
-
1489
.
13.
Brown
BL
,
Wagner
SJ
,
Hapip
CA
, et al
.
Time from apheresis platelet donation to cold storage: evaluation of platelet quality and bacterial growth
.
Transfusion
.
2022
;
62
(
2
):
439
-
447
.
14.
Flint
AW
,
McQuilten
ZK
,
Irwin
G
,
Rushford
K
,
Haysom
HE
,
Wood
EM
.
Is platelet expiring out of date? A systematic review
.
Transfus Med Rev
.
2020
;
34
(
1
):
42
-
50
.
15.
Kelly
K
,
Cancelas
JA
,
Szczepiorkowski
ZM
,
Dumont
DF
,
Rugg
N
,
Dumont
LJ
.
Frozen platelets – development and future directions
.
Transfus Med Rev
.
2020
;
34
(
4
):
286
-
293
.
16.
Slichter
SJ
,
Dumont
LJ
,
Cancelas
JA
, et al
.
Safety and efficacy of cryopreserved platelets in bleeding patients with thrombocytopenia
.
Transfusion
.
2018
;
58
(
9
):
2129
-
2138
.
17.
Strandenes
G
,
Sivertsen
J
,
Bjerkvig
CK
, et al
.
A pilot trial of platelets stored cold versus at room temperature for complex cardiothoracic surgery
.
Anesthesiology
.
2020
;
133
(
6
):
1173
-
1183
.
18.
Miles
J
,
Bailey
SL
,
Obenaus
AM
, et al
.
Storage temperature determines platelet GPVI levels and function in mice and humans
.
Blood Adv
.
2021
;
5
(
19
):
3839
-
3849
.
19.
Kogler
VJ
,
Miles
JA
,
Özpolat
T
, et al
.
Platelet dysfunction reversal with cold-stored vs. room temperature-stored platelet transfusions
.
Blood
.
2024
;
143
(
20
):
2073
-
2088
.
20.
Erhart
S
,
Beer
JH
,
Reinhart
WH
.
Influence of aspirin on platelet count and volume in humans
.
Acta Haematol
.
1999
;
101
(
3
):
140
-
144
.
21.
Mielke
CH
,
Kaneshiro
MM
,
Maher
IA
,
Weiner
JM
,
Rapaport
SI
.
The standardized normal Ivy bleeding time and its prolongation by aspirin
.
Blood
.
1969
;
34
(
2
):
204
-
215
.
22.
Murphy
S
,
Gardner
FH
.
Platelet preservation — effect of storage temperature on maintenance of platelet viability —deleterious effect of refrigerated storage
.
N Engl J Med
.
1969
;
280
(
20
):
1094
-
1098
.
23.
Hanson
SR
,
Slichter
SJ
.
Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement
.
Blood
.
1985
;
66
(
5
):
1105
-
1109
.
24.
Slichter
SJ
,
Kaufman
RM
,
Assmann
SF
, et al
.
Dose of prophylactic platelet transfusions and prevention of hemorrhage
.
N Engl J Med
.
2010
;
362
(
7
):
600
-
613
.
25.
van Rhenen
D
,
Gulliksson
H
,
Cazenave
JP
, et al
.
Transfusion of pooled buffy coat platelet components prepared with photochemical pathogen inactivation treatment: the euroSPRITE trial
.
Blood
.
2003
;
101
(
6
):
2426
-
2433
.
26.
Kerkhoffs
JLH
,
Eikenboom
JC
,
Schipperus
MS
, et al
.
A multicenter randomized study of the efficacy of transfusions with platelets stored in platelet additive solution II versus plasma
.
Blood
.
2006
;
108
(
9
):
3210
-
3215
.
27.
Kerkhoffs
JH
,
Putten
WLJV
,
Novotny
VMJ
, et al
.
Clinical effectiveness of leucoreduced, pooled donor platelet concentrates, stored in plasma or additive solution with and without pathogen reduction
.
Br J Haematol
.
2010
;
150
(
2
):
209
-
217
.
28.
Garban
F
,
Guyard
A
,
Labussière
H
, et al
.
Comparison of the hemostatic efficacy of pathogen-reduced platelets vs untreated platelets in patients with thrombocytopenia and malignant hematologic diseases: a randomized clinical trial
.
Jama Oncol
.
2018
;
4
(
4
):
468
-
475
.
29.
McCullough
J
,
Vesole
DH
,
Benjamin
RJ
, et al
.
Therapeutic efficacy and safety of platelets treated with a photochemical process for pathogen inactivation: the SPRINT trial
.
Blood
.
2004
;
104
(
5
):
1534
-
1541
.
30.
Janetzko
K
,
Cazenave
J
,
Klüter
H
, et al
.
Therapeutic efficacy and safety of photochemically treated apheresis platelets processed with an optimized integrated set
.
Transfusion
.
2005
;
45
(
9
):
1443
-
1452
.
31.
Lozano
M
,
Knutson
F
,
Tardivel
R
, et al
.
A multi-centre study of therapeutic efficacy and safety of platelet components treated with amotosalen and ultraviolet A pathogen inactivation stored for 6 or 7 d prior to transfusion
.
Br J Haematol
.
2011
;
153
(
3
):
393
-
401
.
32.
Mirasol Clinical Evaluation Study Group
.
A randomized controlled clinical trial evaluating the performance and safety of platelets treated with MIRASOL pathogen reduction technology
.
Transfusion
.
2010
;
50
(
11
):
2362
-
2375
.
33.
Rebulla
P
,
Vaglio
S
,
Beccaria
F
, et al
.
Clinical effectiveness of platelets in additive solution treated with two commercial pathogen-reduction technologies
.
Transfusion
.
2017
;
57
(
5
):
1171
-
1183
.
34.
van der Meer
PF
,
Ypma
PF
,
van Geloven
N
, et al
.
Hemostatic efficacy of pathogen-inactivated vs untreated platelets: a randomized controlled trial
.
Blood
.
2018
;
132
(
2
):
223
-
231
.
35.
Koepsell
SA
,
Stolla
M
,
Sedjo
RL
, et al
.
Results of clinical effectiveness of conventional versus Mirasol-treated Apheresis Platelets in Patients with Hypoproliferative Thrombocytopenia (MiPLATE) trial
.
Transfusion
.
2024
;
64
(
3
):
457
-
465
.
36.
Josephson
CD
,
Granger
S
,
Assmann
SF
, et al
.
Bleeding risks are higher in children versus adults given prophylactic platelet transfusions for treatment-induced hypoproliferative thrombocytopenia
.
Blood
.
2012
;
120
(
4
):
748
-
760
.
37.
Coenen
DM
,
Mastenbroek
TG
,
Cosemans
JMEM
.
Platelet interaction with activated endothelium: mechanistic insights from microfluidics
.
Blood
.
2017
;
130
(
26
):
2819
-
2828
.
38.
Ho-Tin-Noé
B
,
Boulaftali
Y
,
Camerer
E
.
Platelets and vascular integrity: how platelets prevent bleeding in inflammation
.
Blood
.
2018
;
131
(
3
):
277
-
288
.
39.
Nachman
RL
,
Rafii
S
.
Platelets, petechiae, and preservation of the vascular wall
.
N Engl J Med
.
2008
;
359
(
12
):
1261
-
1270
.
40.
Gimbrone
MA
,
Aster
RH
,
Cotran
RS
,
Corkery
J
,
Jandl
JH
,
Folkman
J
.
Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium
.
Nature
.
1969
;
222
(
5188
):
33
-
36
.
41.
Nagao
RJ
,
Marcu
R
,
Wang
Y
, et al
.
Transforming endothelium with platelet-rich plasma in engineered microvessels
.
Adv Sci
.
2019
;
6
(
24
):
1901725
.
42.
Gupta
S
,
Konradt
C
,
Corken
A
, et al
.
Hemostasis vs. homeostasis: platelets are essential for preserving vascular barrier function in the absence of injury or inflammation
.
Proc Natl Acad Sci
.
2020
;
117
(
39
):
24316
-
24325
.
43.
Rebulla
P
,
Finazzi
G
,
Marangoni
F
, et al
.
The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto
.
N Engl J Med
.
1997
;
337
(
26
):
1870
-
1875
.
44.
Solomon
J
,
Bofenkamp
T
,
Fahey
JL
,
Chillar
RK
,
Beutler
E
.
Platelet prophylaxis in acute non-lymphoblastic leukemia
.
Lancet
.
1978
;
311
(
8058
):
267
.
45.
Murphy
S
,
Litwin
S
,
Herring
LM
, et al
.
Indications for platelet transfusion in children with acute leukemia
.
Am J Hematol
.
1982
;
12
(
4
):
347
-
356
.
46.
Heckman
KD
,
Weiner
GJ
,
Davis
CS
,
Strauss
RG
,
Jones
MP
,
Burns
CP
.
Randomized study of prophylactic platelet transfusion threshold during induction therapy for adult acute leukemia: 10,000/microL versus 20,000/microL
.
J Clin Oncol
.
1997
;
15
(
3
):
1143
-
1149
.
47.
Zumberg
MS
,
del Rosario
MLU
,
Nejame
CF
, et al
.
A prospective randomized trial of prophylactic platelet transfusion and bleeding incidence in hematopoietic stem cell transplant recipients: 10,000/L versus 20,000/microL trigger
.
Biol Blood Marrow Transplant
.
2002
;
8
(
10
):
569
-
576
.
48.
Diedrich
B
,
Remberger
M
,
Shanwell
A
,
Svahn
B
,
Ringdén
O
.
A prospective randomized trial of a prophylactic platelet transfusion trigger of 10 × 109 per L versus 30 × 109 per L in allogeneic hematopoietic progenitor cell transplant recipients
.
Transfusion
.
2005
;
45
(
7
):
1064
-
1072
.
49.
Stanworth
SJ
,
Estcourt
LJ
,
Powter
G
, et al
.
A no-prophylaxis platelet-transfusion strategy for hematologic cancers
.
N Engl J Med
.
2013
;
368
(
19
):
1771
-
1780
.
50.
Wandt
H
,
Schäfer-Eckart
K
,
Greinacher
A
.
Platelet transfusion in hematology, oncology and surgery
.
Deutsches Aerzteblatt Online
.
2014
;
111
(
48
):
809
-
815
.
51.
Stolla
M
,
Bailey
SL
,
Fang
L
, et al
.
Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C–stored platelets
.
Transfusion
.
2020
;
60
(
3
):
613
-
621
.
52.
Metcalf
RA
,
Nahirniak
S
,
Guyatt
G
, et al
.
Platelet transfusion: 2025 AABB and ICTMG international clinical practice guidelines
.
JAMA
.
2025
;
334
(
7
):
606
-
617
.
53.
Stratiievska
A
,
Filippova
O
,
Özpolat
T
, et al
.
Cold temperature induces a TRPM8-independent calcium release from the endoplasmic reticulum in human platelets
.
PLoS ONE
.
2024
;
19
(
3
):
e0289395
.
54.
Stolla
M
,
Fitzpatrick
L
,
Gettinger
I
, et al
.
In vivo viability of extended 4°C-stored autologous apheresis platelets
.
Transfusion
.
2018
;
58
(
10
):
2407
-
2413
.
55.
Li
VJ
,
Bailey
SL
,
Miles
J
, et al
.
Effect of bedside filtration on aggregates from cold-stored whole blood–derived platelet-rich plasma and apheresis platelet concentrates
.
Transfusion
.
2022
;
62
(
1
):
22
-
27
.
56.
Kogler
VJ
,
Stolla
M
.
There and back again: the once and current developments in donor-derived platelet products for hemostatic therapy
.
Blood
.
2022
;
139
(
26
):
3688
-
3698
.
57.
Mack
JP
,
Miles
J
,
Stolla
M
.
Cold-stored platelets: review of studies in humans
.
Transfus Med Rev
.
2020
;
34
(
4
):
221
-
226
.
58.
Bailey
SL
,
Fang
LY
,
Fitzpatrick
L
,
Byrne
D
,
Pellham
E
,
Stolla
M
.
In vitro and in vivo effects of short-term cold storage of platelets in PAS-C
.
Haematologica
.
2021
;
107
(
4
):
988
-
990
.
59.
Reddoch
KM
,
Pidcoke
HF
,
Montgomery
RK
, et al
.
Hemostatic function of apheresis platelets stored at 4°C and 22°C
.
Shock
.
2014
;
41
(
01
):
54
-
61
.
60.
Nair
PM
,
Pandya
SG
,
Dallo
SF
, et al
.
Platelets stored at 4°C contribute to superior clot properties compared to current standard-of-care through fibrin-crosslinking
.
Br J Haematol
.
2017
;
178
(
1
):
119
-
129
.
61.
Reddoch
KM
,
Montgomery
RK
,
Rodriguez
AC
, et al
.
Endothelium-derived inhibitors efficiently attenuate the aggregation and adhesion responses of refrigerated platelets
.
Shock
.
2016
;
45
(
2
):
220
-
227
.
62.
Hisada
Y
,
Mackman
N
.
Cancer-associated pathways and biomarkers of venous thrombosis
.
Blood
.
2017
;
130
(
13
):
1499
-
1506
.
63.
Baimukanova
G
,
Miyazawa
B
,
Potter
DR
, et al
.
The effects of 22°C and 4°C storage of platelets on vascular endothelial integrity and function
.
Transfusion
.
2016
;
56
(
suppl 1
):
S52
-
S64
.
64.
Webert
KE
,
Arnold
DM
,
Lui
Y
,
Carruthers
J
,
Arnold
E
,
Heddle
NM
.
A new tool to assess bleeding severity in patients with chemotherapy-induced thrombocytopenia (CME)
.
Transfusion
.
2012
;
52
(
11
):
2466
-
2474
.
65.
Heddle
NM
,
Cook
RJ
,
Tinmouth
A
, et al
.
A randomized controlled trial comparing standard- and low-dose strategies for transfusion of platelets (SToP) to patients with thrombocytopenia
.
Blood
.
2009
;
113
(
7
):
1564
-
1573
.
66.
Tinmouth
A
,
Tannock
IF
,
Crump
M
, et al
.
Low-dose prophylactic platelet transfusions in recipients of an autologous peripheral blood progenitor cell transplant and patients with acute leukemia: a randomized controlled trial with a sequential Bayesian design
.
Transfusion
.
2004
;
44
(
12
):
1711
-
1719
.
You do not currently have access to this content.
Sign in via your Institution