• B-cell ALL induces neoantigen-specific CD4+ T cells to adopt Tr1 states, which protect leukemic cells from immune pressure.

  • Repolarizing neoantigen-specific CD4+ T cells toward Th1 states eradicates measurable residual disease.

Abstract

The significance of endogenous immune surveillance in acute lymphoblastic leukemia (ALL) remains controversial. Using clinical B-cell ALL samples and a novel mouse model, we show that neoantigen-specific CD4+ T cells are induced to adopt type 1 regulatory (Tr1) function in the leukemia microenvironment. Tr1 cells then inhibit cytotoxic CD8+ T cells, preventing effective leukemia clearance. Leukemic cells induce Tr1 cells by phenocopying hematopoietic stem cells, which normally are subject to effective surveillance by this CD4+ subset. This mechanism effectively redirects Tr1 cells from a role in preventing cancer to maladaptively promoting clinical relapse. In mouse models, addition of interleukin-10 receptor (IL-10R) blockade to cytotoxic therapy modestly affected Tr1 development but was insufficient to improve leukemia control. In contrast, combined therapy with a cytotoxic agent and anti-PDL1 blockade eradicated measurable residual disease. This correlates with polarization of the neoantigen-specific CD4+ T-cell population from Tr1 toward T helper 1 (Th1) states. Our findings uncover a mechanism that enables leukemic relapse and resolves existing controversies on the role of immune surveillance toward this cancer type. Therapeutic polarization of neoantigen-specific CD4+ T cells away from Tr1 and toward Th1 states may improve contemporary immune therapies by reshaping the immune microenvironment toward states permissive for cytotoxic attack of residual leukemia.

1.
Vora
A
,
Goulden
N
,
Wade
R
, et al
.
Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial
.
Lancet Oncol
.
2013
;
14
(
3
):
199
-
209
.
2.
Bassan
R
,
Spinelli
O
,
Oldani
E
, et al
.
Improved risk classification for risk-specific therapy based on the molecular study of minimal residual disease (MRD) in adult acute lymphoblastic leukemia (ALL)
.
Blood
.
2009
;
113
(
18
):
4153
-
4162
.
3.
Hohtari
H
,
Brück
O
,
Blom
S
, et al
.
Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL
.
Leukemia
.
2019
;
33
(
7
):
1570
-
1582
.
4.
Blaeschke
F
,
Willier
S
,
Stenger
D
, et al
.
Leukemia-induced dysfunctional TIM-3
.
Leukemia
.
2020
;
34
(
10
):
2607
-
2620
.
5.
Tracy
SI
,
Venkatesh
H
,
Hekim
C
, et al
.
Combining nilotinib and PD-L1 blockade reverses CD4+ T-cell dysfunction and prevents relapse in acute B-cell leukemia
.
Blood
.
2022
;
140
(
4
):
335
-
348
.
6.
Roncarolo
MG
,
Gregori
S
,
Bacchetta
R
,
Battaglia
M
,
Gagliani
N
.
The Biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases
.
Immunity
.
2018
;
49
(
6
):
1004
-
1019
.
7.
Oxenius
A
,
Bachmann
MF
,
Zinkernagel
RM
,
Hengartner
H
.
Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection
.
Eur J Immunol
.
1998
;
28
(
1
):
390
-
400
.
8.
Madan
R
,
Demircik
F
,
Surianarayanan
S
, et al
.
Nonredundant roles for B cell-derived IL-10 in immune counter-regulation
.
J Immunol
.
2009
;
183
(
4
):
2312
-
2320
.
9.
Heltemes-Harris
LM
,
Hubbard
GK
,
LaRue
RS
, et al
.
Identification of mutations that cooperate with defects in B cell transcription factors to initiate leukemia
.
Oncogene
.
2021
;
40
(
43
):
6166
-
6179
.
10.
Manlove
LS
,
Berquam-Vrieze
KE
,
Pauken
KE
,
Williams
RT
,
Jenkins
MK
,
Farrar
MA
.
Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells
.
J Immunol
.
2015
;
195
(
8
):
4028
-
4037
.
11.
Rollins
MR
,
Raynor
JF
,
Miller
EA
, et al
.
Germline T cell receptor exchange results in physiological T cell development and function
.
Nat Commun
.
2023
;
14
(
1
):
528
.
12.
Matza
D
,
Badou
A
,
Kobayashi
KS
, et al
.
A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation
.
Immunity
.
2008
;
28
(
1
):
64
-
74
.
13.
Gagliani
N
,
Magnani
CF
,
Huber
S
, et al
.
Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells
.
Nat Med
.
2013
;
19
(
6
):
739
-
746
.
14.
Bonnal
RJP
,
Rossetti
G
,
Lugli
E
, et al
.
Clonally expanded EOMES
.
Nat Immunol
.
2021
;
22
(
6
):
735
-
745
.
15.
Chihara
N
,
Madi
A
,
Kondo
T
, et al
.
Induction and transcriptional regulation of the co-inhibitory gene module in T cells
.
Nature
.
2018
;
558
(
7710
):
454
-
459
.
16.
Hernández-Malmierca
P
, et al
.
Antigen presentation safeguards the integrity of the hematopoietic stem cell pool
.
Cell Stem Cell
.
2022
;
29
:
760
-
775.e710
.
17.
Riva
G
,
Luppi
M
,
Barozzi
P
, et al
.
Emergence of BCR-ABL-specific cytotoxic T cells in the bone marrow of patients with Ph+ acute lymphoblastic leukemia during long-term imatinib mesylate treatment
.
Blood
.
2010
;
115
(
8
):
1512
-
1518
.
18.
Comoli
P
,
Basso
S
,
Riva
G
, et al
.
BCR-ABL-specific T-cell therapy in Ph+ ALL patients on tyrosine-kinase inhibitors
.
Blood
.
2017
;
129
(
5
):
582
-
586
.
19.
Philip
M
,
Schietinger
A
.
Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections
.
Curr Opin Immunol
.
2019
;
58
:
98
-
103
.
20.
Schietinger
A
,
Philip
M
,
Krisnawan
VE
, et al
.
Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis
.
Immunity
.
2016
;
45
(
2
):
389
-
401
.
21.
Chtanova
T
,
Tangye
SG
,
Newton
R
, et al
.
T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells
.
J Immunol
.
2004
;
173
(
1
):
68
-
78
.
22.
King
C
,
Tangye
SG
,
Mackay
CR
.
T follicular helper (TFH) cells in normal and dysregulated immune responses
.
Annu Rev Immunol
.
2008
;
26
:
741
-
766
.
23.
Osum
KC
,
Jenkins
MK
.
Toward a general model of CD4 T cell subset specification and memory cell formation
.
Immunity
.
2023
;
56
(
3
):
475
-
484
.
24.
Hale
JS
,
Youngblood
B
,
Latner
DR
, et al
.
Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection
.
Immunity
.
2013
;
38
(
4
):
805
-
817
.
25.
Pepper
M
,
Pagán
AJ
,
Igyártó
BZ
,
Taylor
JJ
,
Jenkins
MK
.
Opposing signals from the Bcl6 transcription factor and the interleukin-2 receptor generate T helper 1 central and effector memory cells
.
Immunity
.
2011
;
35
(
4
):
583
-
595
.
26.
Podestà
MA
,
Cavazzoni
CB
,
Hanson
BL
, et al
.
Stepwise differentiation of follicular helper T cells reveals distinct developmental and functional states
.
Nat Commun
.
2023
;
14
(
1
):
7712
.
27.
Magnani
CF
,
Alberigo
G
,
Bacchetta
R
, et al
.
Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells
.
Eur J Immunol
.
2011
;
41
(
6
):
1652
-
1662
.
28.
Chen
PP
,
Cepika
AM
,
Agarwal-Hashmi
R
, et al
.
Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients
.
Sci Transl Med
.
2021
;
13
(
617
):
eabf5264
.
29.
Brockmann
L
,
Gagliani
N
,
Steglich
B
, et al
.
IL-10 receptor signaling is essential for TR1 cell function in vivo
.
J Immunol
.
2017
;
198
(
3
):
1130
-
1141
.
30.
Beltra
JC
,
Manne
S
,
Abdel-Hakeem
MS
, et al
.
Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms
.
Immunity
.
2020
;
52
:
825
-
841.e828
.
31.
Gaballa
MR
,
Banerjee
P
,
Milton
DR
, et al
.
Blinatumomab maintenance after allogeneic hematopoietic cell transplantation for B-lineage acute lymphoblastic leukemia
.
Blood
.
2022
;
139
(
12
):
1908
-
1919
.
32.
Liu
L
,
Chang
YJ
,
Xu
LP
, et al
.
T cell exhaustion characterized by compromised MHC class I and II restricted cytotoxic activity associates with acute B lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation
.
Clin Immunol
.
2018
;
190
:
32
-
40
.
33.
Silva
FS
,
Barros-Lima
A
,
Souza-Barros
M
, et al
.
A dual-role for IL-10: from leukemogenesis to the tumor progression in acute lymphoblastic leukemia
.
Cytokine
.
2023
;
171
:
156371
.
34.
Sultan
H
,
Takeuchi
Y
,
Ward
JP
, et al
.
Neoantigen-specific cytotoxic Tr1 CD4 T cells suppress cancer immunotherapy
.
Nature
.
2024
;
632
(
8023
):
182
-
191
.
35.
Koller
P
,
Baran
N
,
Harutyunyan
K
, et al
.
PD-1 blockade in combination with dasatinib potentiates induction of anti-acute lymphocytic leukemia immunity
.
J Immunother Cancer
.
2023
;
11
(
10
):
e006619
.
36.
Elliot
TAE
,
Jennings
EK
,
Lecky
DAJ
, et al
.
Antigen and checkpoint receptor engagement recalibrates T cell receptor signal strength
.
Immunity
.
2021
;
54
(
11
):
2481
-
2496.e6
.
37.
Burton
BR
,
Britton
GJ
,
Fang
H
, et al
.
Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy
.
Nat Commun
.
2014
;
5
:
4741
.
38.
Hui
E
,
Cheung
J
,
Zhu
J
, et al
.
T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition
.
Science
.
2017
;
355
(
6332
):
1428
-
1433
.
39.
Kamphorst
AO
,
Wieland
A
,
Nasti
T
, et al
.
Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent
.
Science
.
2017
;
355
(
6332
):
1423
-
1427
.
40.
Zhang
Y
,
Song
Q
,
Cassady
K
, et al
.
Blockade of trans PD-L1 interaction with CD80 augments antitumor immunity
.
Proc Natl Acad Sci U S A
.
2023
;
120
(
16
):
e2205085120
.
41.
Park
JH
,
Rivière
I
,
Gonen
M
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
-
459
.
42.
Kantarjian
H
,
Stein
A
,
Gökbuget
N
, et al
.
Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia
.
N Engl J Med
.
2017
;
376
(
9
):
836
-
847
.
You do not currently have access to this content.
Sign in via your Institution