• C1q induces NETs in LPS-primed neutrophils through CR3/SCARF1.

  • C1q-NETs contain functional neutrophil-derived anticoagulatory proteins that regulate NET-related coagulation.

Abstract

Neutrophils interact with the external milieu in both tissue and blood microenvironments and are emerging as important regulators of blood coagulation. In this study, we explored whether complement induces neutrophil extracellular trap (NET) formation and related blood coagulation using human donor-derived neutrophils. Complement C1q induces NETosis in lipopolysaccharide (LPS) O127–primed neutrophils, whereas LPS alone does not induce NETosis. Bulk RNA sequencing revealed a unique LPS-driven altered neutrophil state, and complement sensitivity for NETosis was found to be transcriptionally dependent. Using an arrayed CRISPR knockout screen in the neutrophil-like differentiated HL60 cells, we identified that SCARF1 and complement receptor 3 are required for C1q-NETosis. Given NETs contain procoagulatory components such as DNA and histones, we investigated whether C1q-related NETs influenced blood coagulation. LPS+C1q-NETs were associated with reduced coagulation activity compared with LPS treatment alone. We further found that LPS upregulated tissue factor expression and coagulation-related activity in neutrophils. Furthermore, neutrophils secrete anticoagulant proteins, including protein C and tissue factor pathway inhibitors, during C1q-mediated NET formation that functionally regulate NET-related coagulation. C1q-NETs also activate the coagulation factors XII and XI, facilitating both intrinsic coagulation and kallikrein-dependent bradykinin production. This study elucidates how NETs regulate both procoagulatory and anticoagulatory components that may influence the pathophysiology of disease.

1.
Skendros
P
,
Mitsios
A
,
Chrysanthopoulou
A
, et al
.
Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis
.
J Clin Invest
.
2020
;
130
(
11
):
6151
-
6157
.
2.
de Bont
CM
,
Boelens
WC
,
Pruijn
GJM
.
NETosis, complement, and coagulation: a triangular relationship
.
Cell Mol Immunol
.
2019
;
16
(
1
):
19
-
27
.
3.
Badimon
L
,
Vilahur
G
.
Neutrophil extracellular traps: a new source of tissue factor in atherothrombosis
.
Eur Heart J
.
2015
;
36
(
22
):
1364
-
1366
.
4.
Burn
GL
,
Foti
A
,
Marsman
G
,
Patel
DF
,
Zychlinsky
A
.
The neutrophil
.
Immunity
.
2021
;
54
(
7
):
1377
-
1391
.
5.
Rosales
C
.
Neutrophil: a cell with many roles in inflammation or several cell types?
.
Front Physiol
.
2018
;
9
:
113
.
6.
Brinkmann
V
,
Reichard
U
,
Goosmann
C
, et al
.
Neutrophil extracellular traps kill bacteria
.
Science
.
2004
;
303
(
5663
):
1532
-
1535
.
7.
Papayannopoulos
V
.
Neutrophil extracellular traps in immunity and disease
.
Nat Rev Immunol
.
2018
;
18
(
2
):
134
-
147
.
8.
Thiam
HR
,
Wong
SL
,
Qiu
R
, et al
.
NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
13
):
7326
-
7337
.
9.
Saffarzadeh
M
,
Juenemann
C
,
Queisser
MA
, et al
.
Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones
.
PLoS One
.
2012
;
7
(
2
):
e32366
.
10.
Gould
TJ
,
Vu
TT
,
Swystun
LL
, et al
.
Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
9
):
1977
-
1984
.
11.
Palta
S
,
Saroa
R
,
Palta
A
.
Overview of the coagulation system
.
Indian J Anaesth
.
2014
;
58
(
5
):
515
-
523
.
12.
Juha
M
,
Molnár
A
,
Jakus
Z
,
Ledó
N
.
NETosis: an emerging therapeutic target in renal diseases
.
Front Immunol
.
2023
;
14
:
1253667
.
13.
Cahilog
Z
,
Zhao
H
,
Wu
L
, et al
.
The role of neutrophil NETosis in organ injury: novel inflammatory cell death mechanisms
.
Inflammation
.
2020
;
43
(
6
):
2021
-
2032
.
14.
Leung
HHL
,
Perdomo
J
,
Ahmadi
Z
, et al
.
NETosis and thrombosis in vaccine-induced immune thrombotic thrombocytopenia
.
Nat Commun
.
2022
;
13
(
1
):
5206
.
15.
Shi
Y
,
Gauer
JS
,
Baker
SR
,
Philippou
H
,
Connell
SD
,
Ariëns
RAS
.
Neutrophils can promote clotting via FXI and impact clot structure via neutrophil extracellular traps in a distinctive manner in vitro
.
Sci Rep
.
2021
;
11
(
1
):
1718
.
16.
Noubouossie
DF
,
Whelihan
MF
,
Yu
YB
, et al
.
In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps
.
Blood
.
2017
;
129
(
8
):
1021
-
1029
.
17.
Reis
ES
,
Mastellos
DC
,
Hajishengallis
G
,
Lambris
JD
.
New insights into the immune functions of complement
.
Nat Rev Immunol
.
2019
;
19
(
8
):
503
-
516
.
18.
Wu
X
,
You
D
,
Cui
J
, et al
.
Reduced neutrophil extracellular trap formation during ischemia reperfusion injury in C3 KO mice: C3 requirement for NETs release
.
Front Immunol
.
2022
;
13
:
781273
.
19.
Devalaraja-Narashimha
K
,
Ehmann
PJ
,
Huang
C
, et al
.
Association of complement pathways with COVID-19 severity and outcomes
.
Microbes Infect
.
2023
;
25
(
4
):
105081
.
20.
Cedzyński
M
,
Thielens
NM
,
Mollnes
TE
,
Vorup-Jensen
T
.
Editorial: the role of complement in health and disease
.
Front Immunol
.
2019
;
10
:
1869
.
21.
Li
H
,
Chen
J
,
Hu
Y
,
Cai
X
,
Zhang
P
.
Elevated serum C1q levels in children with sepsis
.
Front Pediatr
.
2021
;
9
:
619899
.
22.
Li
H
,
Chen
J
,
Hu
Y
,
Cai
X
,
Tang
D
,
Zhang
P
.
Serum C1q levels have prognostic value for sepsis and are related to the severity of sepsis and organ damage
.
J Inflamm Res
.
2021
;
14
:
4589
-
4600
.
23.
van de Bovenkamp
FS
,
Dijkstra
DJ
,
van Kooten
C
,
Gelderman
KA
,
Trouw
LA
.
Circulating C1q levels in health and disease, more than just a biomarker
.
Mol Immunol
.
2021
;
140
:
206
-
216
.
24.
Oh
H
,
Siano
B
,
Diamond
S
.
Neutrophil isolation protocol
.
JoVE
.
2008
(
17
):
e745
.
25.
Gonzalez
AS
,
Bardoel
BW
,
Harbort
CJ
,
Zychlinsky
A
.
Induction and quantification of neutrophil extracellular traps
.
Methods Mol Biol
.
2014
;
1124
:
307
-
318
.
26.
Balbino
B
,
Herviou
P
,
Godon
O
, et al
.
The anti-IgE mAb omalizumab induces adverse reactions by engaging Fcgamma receptors
.
J Clin Invest
.
2020
;
130
(
3
):
1330
-
1335
.
27.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
28.
Stephens
M
.
False discovery rates: a new deal
.
Biostatistics
.
2016
;
18
(
2
):
275
-
294
.
29.
Yu
G
,
Wang
LG
,
Han
Y
,
He
QY
.
clusterProfiler: an R package for comparing biological themes among gene clusters
.
OMICS
.
2012
;
16
(
5
):
284
-
287
.
30.
Millius
A
,
Weiner
OD
.
Manipulation of neutrophil-like HL-60 cells for the study of directed cell migration
.
Methods Mol Biol
.
2010
;
591
:
147
-
158
.
31.
Zheng
Y
,
Sefik
E
,
Astle
J
, et al
.
Human neutrophil development and functionality are enabled in a humanized mouse model
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
43
):
e2121077119
.
32.
Matafonov
A
,
Ivanov
IS
,
Sun
M
,
Gailani
D
,
Gailani
D
.
Coagulation factor XI and factor XII in DNA-induced thrombin generation
.
Blood
.
2014
;
124
(
21
):
581
.
33.
de Maat
S
,
Clark
CC
,
Boertien
M
, et al
.
Factor XII truncation accelerates activation in solution
.
J Thromb Haemost
.
2019
;
17
(
1
):
183
-
194
.
34.
Thielens
NM
,
Tedesco
F
,
Bohlson
SS
,
Gaboriaud
C
,
Tenner
AJ
.
C1q: a fresh look upon an old molecule
.
Mol Immunol
.
2017
;
89
:
73
-
83
.
35.
Petry
F
,
Botto
M
,
Holtappels
R
,
Walport
MJ
,
Loos
M
.
Reconstitution of the complement function in C1q-deficient (C1qa−/−) mice with wild-type bone marrow cells
.
J Immunol
.
2001
;
167
(
7
):
4033
-
4037
.
36.
Pieterse
E
,
Rother
N
,
Yanginlar
C
,
Hilbrands
LB
,
van der Vlag
J
.
Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps
.
Front Immunol
.
2016
;
7
:
484
.
37.
McCormick
A
,
Heesemann
L
,
Wagener
J
, et al
.
NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus
.
Microbes Infect
.
2010
;
12
(
12-13
):
928
-
936
.
38.
Mitchell
DA
,
Pickering
MC
,
Warren
J
, et al
.
C1q deficiency and autoimmunity: the effects of genetic background on disease expression
.
J Immunol
.
2002
;
168
(
5
):
2538
-
2543
.
39.
Al-Homood
IA
.
Thrombosis in systemic lupus erythematosus: a review article
.
ISRN Rheumatol
.
2012
;
2012
:
428269
.
40.
Darden
DB
,
Bacher
R
,
Brusko
MA
, et al
.
Single-cell RNA-seq of human myeloid-derived suppressor cells in late sepsis reveals multiple subsets with unique transcriptional responses: a pilot study
.
Shock
.
2021
;
55
(
5
):
587
-
595
.
41.
Hegde
S
,
Leader
AM
,
Merad
M
.
MDSC: markers, development, states, and unaddressed complexity
.
Immunity
.
2021
;
54
(
5
):
875
-
884
.
42.
Alshetaiwi
H
,
Pervolarakis
N
,
McIntyre
LL
, et al
.
Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics
.
Sci Immunol
.
2020
;
5
(
44
):
eaay6017
.
43.
Veglia
F
,
Sanseviero
E
,
Gabrilovich
DI
.
Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity
.
Nat Rev Immunol
.
2021
;
21
(
8
):
485
-
498
.
44.
de Kleijn
S
,
Langereis
JD
,
Leentjens
J
, et al
.
IFN-gamma-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1
.
PLoS One
.
2013
;
8
(
8
):
e72249
.
45.
Dick
EP
,
Prince
LR
,
Prestwich
EC
,
Renshaw
SA
,
Whyte
MK
,
Sabroe
I
.
Pathways regulating lipopolysaccharide-induced neutrophil survival revealed by lentiviral transduction of primary human neutrophils
.
Immunology
.
2009
;
127
(
2
):
249
-
255
.
46.
Cassatella
MA
,
Tamassia
N
,
Crepaldi
L
, et al
.
Lipopolysaccharide primes neutrophils for a rapid response to IL-10
.
Eur J Immunol
.
2005
;
35
(
6
):
1877
-
1885
.
47.
Zheng
Y
,
Fan
L
,
Xia
S
, et al
.
Role of complement C1q/C3-CR3 signaling in brain injury after experimental intracerebral hemorrhage and the effect of minocycline treatment
.
Front Immunol
.
2022
;
13
:
919444
.
48.
Wang
Y
,
Xu
F
,
Li
G
, et al
.
Structure of scavenger receptor SCARF1 and its interaction with lipoproteins
.
Elife
.
2024
;
13
:
RP93428
.
49.
Ramirez-Ortiz
ZG
,
Pendergraft
WF
,
Prasad
A
, et al
.
The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity
.
Nat Immunol
.
2013
;
14
(
9
):
917
-
926
.
50.
Datta
D
,
Leslie
SN
,
Morozov
YM
, et al
.
Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex
.
J Neuroinflammation
.
2020
;
17
(
1
):
8
.
51.
Mutua
V
,
Gershwin
LJ
.
A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics
.
Clin Rev Allergy Immunol
.
2021
;
61
(
2
):
194
-
211
.
52.
Oehmcke
S
,
Mörgelin
M
,
Herwald
H
.
Activation of the human contact system on neutrophil extracellular traps
.
J Innate Immun
.
2009
;
1
(
3
):
225
-
230
.
You do not currently have access to this content.
Sign in via your Institution