• Immunogenicity of red blood cell antigens is related to protein structure at amino acid substitution sites that create the antigens.

  • The most immunogenic amino acid substitutions are located in rigid, ordered regions with reduced accessibility.

Abstract

Polypeptide blood group antigens, many of which are created by single exofacial amino acid substitutions, have varying immunogenicities. Why some amino acid substitutions are more immunogenic than others is little understood. Using AlphaFold2, an artificial intelligence system that predicts 3-dimensional protein structure, along with multiple other structure analysis programs, we investigated protein structure at sites of amino acid substitutions that create 9 clinically significant blood group antigens. Based on structure predictions, the amino acid substitutions that create the 4 most immunogenic of the 9 antigens (K, Jka, Lua, and E) were typically buried or partially buried in rigid, ordered protein regions, usually helices and β-strands. This was reflected by their lower mean relative solvent accessibility (RSA) than the 5 less immunogenic antigens (c, M, Fya, C, and S; 0.13 vs 0.81; P = .003) and higher mean AlphaFold2 confidence score (92.5 vs 48.3; P = .001; scores <50 predict protein disorder). Substitutions creating the 5 least immunogenic antigens (c, Fya, M, C, and S) were all predicted to be in flexible regions with high accessibility, either in surface-accessible loops (C, c) or disordered coils (Fya, M, and S). Scatter plots revealed a positive linear correlation of immunogenicity with confidence score (R2 = 0.826; P = .0007) and percent helix/β-strand in 15-mers centered around the substitution sites (R2 = 0.763; P = .0021) and a negative linear correlation with RSA (R2 = 0.688; P = .0057). Therefore, based on an informatics analysis, the protein secondary and tertiary structures at amino acid substitution sites that create blood group antigens are significant correlates and potential determinants of immunogenicity.

1.
Reid
M
,
Shine
I
. The Discovery and Significance of the Blood Groups.
SBB Books
;
2012
.
2.
Arthur
CM
,
Stowell
SR
.
The development and consequences of red blood cell alloimmunization
.
Annu Rev Pathol
.
2023
;
18
:
537
-
564
.
3.
International Society of Blood Transfusion
.
Red cell immunogenetics and blood group terminology
. Accessed 17 February 2024. https://www.isbtweb.org/isbt-working-parties/rcibgt.html.
4.
Giblett
ER
.
A critique of the theoretical hazard of inter vs. intra-racial transfusion
.
Transfusion
.
1961
;
1
(
4
):
233
-
238
.
5.
Tormey
CA
,
Stack
G
.
Immunogenicity of blood group antigens: a mathematical model corrected for antibody evanescence with exclusion of naturally occurring and pregnancy-related antibodies
.
Blood
.
2009
;
114
(
19
):
4279
-
4282
.
6.
Stack
G
,
Tormey
CA
.
Estimating the immunogenicity of blood group antigens: a modified calculation that corrects for transfusion exposures
.
Br J Haematol
.
2016
;
175
(
1
):
154
-
160
.
7.
Evers
D
,
Middelburg
RA
,
de Haas
M
, et al
.
Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study
.
Lancet Haematol
.
2016
;
3
(
6
):
e284
-
e292
.
8.
Howe
JG
,
Stack
G
.
Structural and functional impacts of AA substitutions that create blood group antigens: implications for immunogenicity
.
Transfusion
.
2017
;
57
(
3
):
541
-
553
.
9.
Howe
JG
,
Stack
G
.
Relationship of epitope glycosylation and other properties of blood group proteins to the immunogenicity of blood group antigens
.
Transfusion
.
2018
;
58
(
7
):
1739
-
1751
.
10.
Howe
JG
,
Stack
G
.
Relationship between B-cell epitope structural properties and the immunogenicity of blood group antigens: outlier properties of the Kell K1 antigen
.
Transfusion
.
2022
;
62
(
11
):
2349
-
2362
.
11.
Howe
JG
,
Stack
G
.
Search of a genomic sequence database for potential novel blood group antigens: investigation into why some amino acid substitutions are not immunogenic
.
Transfusion
.
2023
;
63
(
7
):
1399
-
1411
.
12.
Daniels
G
.
The molecular genetics of blood group polymorphism
.
Hum Genet
.
2009
;
126
(
6
):
729
-
742
.
13.
Reid
ME
,
Lomas-Francis
C
,
Olsson
ML
. The Blood Group Antigen FactsBook. 3rd ed.
Academic Press
;
2012
.
14.
Research Collaboratory for Structural Bioinformatics
.
Protein data bank (RCSB PDB)
. Accessed 11 February 2024. https://www.rcsb.org/#Category-search.
15.
Jumper
J
,
Evans
R
,
Pritzel
A
, et al
.
Highly accurate protein structure prediction with AlphaFold
.
Nature
.
2021
;
596
(
7873
):
583
-
589
.
16.
Tunyasuvunakool
K
,
Adler
J
,
Wu
Z
, et al
.
Highly accurate protein structure prediction for the human proteome
.
Nature
.
2021
;
596
(
7873
):
590
-
596
.
17.
Høie
MH
,
Kiehl
EN
,
Petersen
B
, et al
.
NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning
.
Nucleic Acids Res
.
2022
;
50
(
W1
):
W510
-
W515
.
18.
Pettersen
EF
,
Goddard
TD
,
Huang
CC
, et al
.
UCSF ChimeraX: structure visualization for researchers, educators, and developers
.
Protein Sci
.
2021
;
30
(
1
):
70
-
82
.
19.
Kabsch
W
,
Sander
C
.
Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
.
Biopolymers
.
1983
;
22
(
12
):
2577
-
2637
.
20.
Redl
I
,
Fisicaro
C
,
Dutton
O
, et al
.
ADOPT: intrinsic protein disorder prediction through deep bidirectional transformers
.
NAR Genom Bioinform
.
2023
;
5
(
2
):
lqad041
.
21.
Hu
G
,
Katuwawala
A
,
Wang
K
, et al
.
flDPnn: accurate intrinsic disorder prediction with putative propensities of disorder functions
.
Nat Commun
.
2021
;
12
:
4438
.
22.
Emenecker
RJ
,
Griffith
D
,
Holehouse
AS
.
Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure
.
Biophys J
.
2021
;
120
(
20
):
4312
-
4319
.
23.
Vander Meersche
Y
,
Cretin
G
,
de Brevern
AG
,
Gelly
JC
,
Galochkina
T
.
MEDUSA: prediction of protein flexibility from sequence
.
J Mol Biol
.
2021
;
433
(
11
):
166882
.
24.
Strzyz
P
.
Lasker award for AlphaFold
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
11
):
774
.
25.
Roney
JP
,
Ovchinnikov
S
.
State-of-the-art estimation of protein model accuracy using AlphaFold
.
Phys Rev Lett
.
2022
;
129
(
23
):
238101
.
26.
Fowler
NJ
,
Williamson
MP
.
The accuracy of protein structures in solution determined by AlphaFold and NMR
.
Structure
.
2022
;
30
(
7
):
925
-
933.e2
.
27.
Service
R
.
Structural genomics, round 2
.
Science
.
2005
;
307
(
5715
):
1554
-
1558
.
28.
Terwilliger
TC
,
Liebschner
D
,
Croll
TI
, et al
.
AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination
.
Nat Methods
.
2024
;
21
(
1
):
110
-
116
.
29.
Wang
L
,
Wen
Z
,
Liu
S-W
, et al
.
Overview of AlphaFold2 and breakthroughs in overcoming its limitations
.
Comput Biol Med
.
2024
;
176
:
108620
.
30.
The UniProt Consortium
.
UniProt: the Universal Protein Knowledgebase in 2023
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D523
-
D531
.
31.
Mirdita
M
,
Schütze
K
,
Moriwaki
Y
,
Heo
L
,
Ovchinnikov
S
,
Steinegger
M
.
ColabFold: making protein folding accessible to all
.
Nat Methods
.
2022
;
19
(
6
):
679
-
682
.
32.
Zemla
A
.
Local-Global Alignment (LGA). A method for finding 3D similarities in protein structures
. Accessed 11 February 2024. http://linum.proteinmodel.org/AS2TS/LGA/lga.html.
33.
Yang Zhang Research Group
.
TM-score. A quantitative assessment of protein structure similarity
. Accessed 28 July 2024. https://zhanggroup.org/TM-score/.
34.
Proteopedia
.
Calculating GDT TS
. Accessed 20 March 2024. https://proteopedia.org/wiki/index.php/Calculating_GDT_TS.
35.
Xu
J
,
Zhang
Y
.
How significant is a protein structure similarity with TM-score = 0.5?
.
Bioinformatics
.
2010
;
26
(
7
):
889
-
895
.
36.
Center for Informational Biology, Ochanomizu University
.
Accessible surface area and accessibility calculation for protein, ver. 1.2
. Accessed 23 February 2023. http://cib.cf.ocha.ac.jp/bitool/ASA/.
37.
Goldman
N
,
Thorne
JL
,
Jones
DT
.
Assessing the impact of secondary structure and solvent accessibility on protein evolution
.
Genetics
.
1998
;
149
(
1
):
445
-
458
.
38.
Ma
J
,
Wang
S
.
AcconPred: predicting solvent accessibility and contact number simultaneously by a multitask learning framework under the conditional neural fields model
.
Biomed Res Int
.
2015
;
2015
:
678764
.
39.
DeepMind and EMBL-EBI
.
AlphaFold protein structure database, frequently asked questions
. Accessed 25 February 2024. https://alphafold.ebi.ac.uk/faq.
40.
Akdel
M
,
Pires
DEV
,
Pardo
EP
, et al
.
A structural biology community assessment of AlphaFold2 applications
.
Nat Struct Mol Biol
.
2022
;
29
(
11
):
1056
-
1067
.
41.
Conte
AD
,
Mehdiabadi
M
,
Bouhraoua
A
,
Miguel Monzon
A
,
Tosatto
SCE
,
Piovesan
D
.
Critical assessment of protein intrinsic disorder prediction (CAID) – results of round 2
.
Proteins
.
2023
;
91
(
12
):
1925
-
1934
.
42.
Joosten
RP
,
te Beek
TAH
,
Krieger
E
, et al
.
A series of PDB related databases for everyday needs
.
Nucleic Acids Res
.
2011
;
39
(
Database issue
):
D411
-
D419
.
43.
Hanson
J
,
Paliwal
K
,
Litfin
T
,
Yang
Y
,
Zhou
Y
.
Improving prediction of protein secondary structure, backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble of recurrent and residual convolutional neural networks
.
Bioinformatics
.
2019
;
35
(
14
):
2403
-
2410
.
44.
Lowry
R
.
VassarStats: website for statistical computation
. Accessed 21 September 2023. http://vassarstats.net/.
45.
Mankelow
TJ
,
Burton
N
,
Stefansdottir
FO
, et al
.
The Laminin 511/521-binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3
.
Blood
.
2007
;
110
(
9
):
3398
-
3406
.
46.
Vallese
F
,
Kim
K
,
Yen
LY
, et al
.
Architecture of the human erythrocyte ankyrin-1 complex
.
Nat Struct Mol Biol
.
2022
;
29
(
7
):
706
-
718
.
47.
Jumper
J
,
Evans
R
,
Pritzel
A
, et al
.
Applying and improving AlphaFold at CASP14
.
Proteins
.
2021
;
89
(
12
):
1711
-
1721
.
48.
Bæk
KT
,
Kepp
KP
.
Assessment of AlphaFold2 for human proteins via residue solvent exposure
.
J Chem Inf Model
.
2022
;
62
(
14
):
3391
-
3400
.
49.
Hatos
A
,
Hajdu-Soltész
B
,
Monzon
AM
, et al
.
DisProt: intrinsic protein disorder annotation in 2020
.
Nucleic Acids Res
.
2020
;
48
(
D1
):
D269
-
D276
.
50.
Kranjc
A
,
Narwani
TJ
,
Abby
SS
,
de Brevern
AG
.
Structural space of the Duffy antigen/receptor for chemokines’ intrinsically disordered ectodomain 1 explored by temperature replica-exchange molecular dynamics simulations
.
Int J Mol Sci
.
2023
;
24
(
17
):
13280
.
51.
Ekman
S
,
Flower
R
,
Mahler
S
, et al
.
In silico molecular dynamics of human glycophorin A (GPA) extracellular structure
.
Ann Blood
.
2021
;
6
:
11
.
52.
Radivojac
P
,
Obradovic
Z
,
Smith
DK
, et al
.
Protein flexibility and intrinsic disorder
.
Protein Sci
.
2004
;
13
(
1
):
71
-
80
.
53.
Armen
R
,
Alonso
DOV
,
Daggett
V
.
The role of ⍺-, 310-, and π-helix in helix→coil transitions
.
Protein Sci
.
2003
;
12
(
6
):
1145
-
1157
.
54.
EL-Manzalawy
Y
,
Dobbs
D
,
Honavar
V
.
Predicting flexible length linear B-cell epitopes
.
Comput Syst Bioinformatics Conf
.
2008
;
7
:
121
-
132
.
55.
Singh
H
,
Ansari
HR
,
Raghava
GPS
.
Improved method for linear B-cell epitope prediction using antigen’s primary sequence
.
PLoS ONE
.
2013
;
8
(
5
):
e62216
.
56.
Wang
H-W
,
Pai
T-W
. Machine learning-based methods for prediction of linear B-cell epitopes. In:
De
RK
,
Tomar
N
, eds.
Immunoinformatics
. 2nd ed.
Springer (Humana Press)
;
2014
:
214
-
236
.
57.
EMBL-EBI
.
Biomacromolecular structures. Levels of protein structure – tertiary
. Accessed 25 February 2024. https://www.ebi.ac.uk/training/online/courses/biomacromolecular-structures/proteins/levels-of-protein-structure-primary/levels-of-protein-structure-tertiary/.
58.
Trivedi
R
,
Nagarajaram
HA
.
Intrinsically disordered proteins: an overview
.
Int J Mol Sci
.
2022
;
23
(
22
):
14050
.
59.
Turoverov
KK
,
Kuznetsova
IM
,
Uversky
VN
.
The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation
.
Prog Biophys Mol Biol
.
2010
;
102
(
2-3
):
73
-
84
.
60.
Sanchez-Trincado
JL
,
Gomez-Perosanz
M
,
Reche
PA
.
Fundamentals and methods for T- and B-cell epitope prediction
.
J Immunol Res
.
2017
;
2017
:
2680160
.
61.
Advani
H
,
Zamor
J
,
Judd
WJ
,
Johnson
CL
,
Marsh
WL
.
Inactivation of Kell blood group antigens by 2-aminoethylisothiouronium bromide
.
Br J Haematol
.
1982
;
51
(
1
):
107
-
115
.
62.
Branch
DR
,
Muensch
HA
,
Sy Siok Hian
AL
,
Petz
L
.
Disulfide bonds are a requirement for Kell and Cartwright (Yta) blood group antigen integrity
.
Br J Haematol
.
1983
;
54
(
4
):
573
-
578
.
63.
Levene
C
,
Karniel
Y
,
Sela
R
.
2-Aminoethylisothiouronium bromide-treated red cells and the Lutheran antigens Lua and Lub [letter]
.
Transfusion
.
1987
;
27
(
6
):
505
-
506
.
64.
MacRaild
CA
,
Richards
JS
,
Anders
RF
,
Norton
RS
.
Antibody recognition of disordered antigens
.
Structure
.
2016
;
24
(
1
):
148
-
157
.
65.
Wasniowska
K
,
Lisowska
E
,
Halverson
GR
,
Chaudhuri
A
,
Reid
ME
.
The Fya, Fy6, Fy3 epitopes of the Duffy blood group system recognized by new monoclonal antibodies: identification of a linear Fy3 epitope
.
Br J Haematol
.
2004
;
124
(
1
):
118
-
122
.
66.
Lisowska
E
,
Messeter
L
,
Duk
M
,
Czerwiński
M
,
Lundblad
A
.
A monoclonal anti-glycophorin A antibody recognizing the blood group M determinant: studies on the subspecificity
.
Mol Immunol
.
1987
;
24
(
6
):
605
-
613
.
67.
Pedersen
JT
,
Kaplan
H
,
Wedeck
L
,
Murphy
RB
,
LoBue
J
,
Pincus
MR
.
Octapeptide segments from the amino terminus of glycophorin A contain the antigenic determinants of the M and N blood groups systems
.
J Lab Clin Med
.
1990
;
116
(
4
):
527
-
534
.
68.
Halverson
GR
,
Tossas
E
,
Velliquette
RW
, et al
.
Murine monoclonal anti-s and other anti-glycophorin B antibodies resulting from immunizations with a GPB.s peptide
.
Transfusion
.
2009
;
49
(
3
):
485
-
494
.
69.
Dobson
L
,
Szekeres
LI
,
Gerdan
C
,
Lango
T
,
Zeke
A
,
Tusnady
GE
.
TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alpha-helical tramsmembrane protein structures
.
Nuc Acid Res
.
2023
;
51
(
D1
):
D517
-
D522
.
70.
Protein Bioinformatics Research Group, Research Center of Natural Sciences
.
TmAlphaFold transmembrane protein structure database
. Accessed 18 December 2024. https://tmalphafold.ttk.hu.
71.
Buel
GR
,
Walters
KJ
.
Can AlphaFold2 predict the impact of missense mutations on structure?
.
Nat Struct Mol Biol
.
2022
;
29
(
1
):
1
-
2
.
72.
Lee
S
,
Debnath
AK
,
Redman
CM
.
Active amino acids of the Kell blood group protein and model of the ectodomain based on the structure of neutral endopeptidase 24.11
.
Blood
.
2003
;
102
(
8
):
3028
-
3034
.
You do not currently have access to this content.
Sign in via your Institution